We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Safe CO2 Storage Viable Following Tests

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Scientists have found an inexpensive way to monitor the storage of carbon dioxide deep underground. 

Successful trials of their method at a site in Australia will inform the development of Carbon Capture and Storage (CCS) technology.

This involves CO2 from power stations and industrial sources being held deep underground, to prevent emissions from contributing to climate change.

Oxygen testing

In the first experiment of its kind, researchers studied the different forms of oxygen in waters sampled from rocks deep below ground at the storage site in the Otway Basin, in south eastern Australia.

They found that the reservoir’s waters changed their oxygen composition when in contact with bubbles of trapped CO2.

Testing samples of water for this altered form of oxygen provides a simple way to measure the amount of CO2 stored within the rock.

Locking away gas

The study shows that injected CO2 is very quickly retained in the underground rocks, with CO2being locked away like air being trapped within a foam sponge.

The research was carried out by the Universities of Edinburgh and Australian research organisation CO2CRC.

Researchers say their technique provides an inexpensive monitoring solution, as they need only measure only CO2 injected into a site and water samples from before and after injection to find out how much CO2 is trapped.

The study, published in the International Journal of Greenhouse Gas Control, was supported by the UK Carbon Capture and Storage Research Centre and CO2CRC.

Our results highlight the promising potential of using oxygen compositions to monitor the fate of CO2 injected underground. This method is simple and cheap, and can be easily combined with other monitoring techniques for CCS projects in the UK and beyond. – Dr Sascha Serno, School of GeoSciences 

Understanding the fate of CO2 injected into the underground for storage is essential for engineering secure CO2 stores. Our work with our Australian partners paves the way for better understanding of the fate of CO2 when we inject it underground. – Dr Stuart Gilfillan, School of GeoSciences