Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

KU Medical Center to Lead $7.5 Million Male Contraceptive Research and Drug Development Program

Published: Thursday, April 12, 2007
Last Updated: Thursday, April 12, 2007
Bookmark and Share
The University will use the NIH grant to establish a multi-institutional organization that will work to develop new non-hormonal, reversible male contraceptive agents for drug production.

A researcher at the University of Kansas Medical Center has been awarded more than $7.5 million in funding from the National Institutes of Health to lead a team, including researchers at seven universities, in a collaborative effort to develop male contraceptives.

This five-year grant will establish the Interdisciplinary Center for Male Contraceptive Research and Drug Development, a multi-institutional organization that will work to develop new non-hormonal, reversible male contraceptive agents for drug production.

The center will not only consist of research teams at KU Medical Center and KU-Lawrence, but also collaborators across the country at the University of Minnesota, Duke University, the University of California-San Fransisco, Robert Wood Johnson Medical School, and the University of Medicine and Dentistry of New Jersey.

Funding for the center was awarded by the Contraception & Reproductive Health Branch of the National Institute of Child Health and Human Development.

The center will be directed by Joseph Tash, PhD, an associate professor of molecular and integrative physiology at KUMC, and associate director, Dr. Gunda Georg, Chair of Medicinal Chemistry at University of Minnesota. Tash, Georg, and a team of researchers at KUMC and KU Lawrence, have been conducting NIH-funded research, designing and testing male contraceptive agents, for more than five years.

Their work has lead to the development of some promising chemical compounds, such as Gamendazole, one of the most potent new oral anti-spermatogenic agents identified to date. Under this grant, research will continue on Gamendazole as well as exploring new lead compounds.

Tash said the group intends to take a multidisciplinary approach, focusing on several chemical compounds, and proteins that regulate testes function so that mature sperm are not produced. They are also concentrating on chemical agents that may temporarily deactivate enzymes so that sperm development is prevented or sperm are immobilized so the egg remains unfertilized. To identify new lead compounds, the center will utilize High Throughput Screening and proteomics to test hundreds of thousands of compounds.

While High Throughput Screening (HTS) technology is more common in private industry, KU is one of the few universities in the nation to have such a facility, which Tash said is important since many pharmaceutical companies have curtailed their research and development in male contraception. Without the HTS lab, screening hundreds of thousands of compounds could take years, but with the technology, screening time is dramatically reduced to weeks.

The research program in this center will go beyond identifying new protein targets involved in regulation of male fertility, and begin cutting edge drug discovery and design. The scientists involved in the research have a record of success in providing NIH with highly promising reversible non-hormonal male contraceptive agents.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Blocking Previously ‘Undruggable’ Cancer Protein
Researchers from the University of Kansas have found molecular that block previously ‘undruggable’ protein tied to cancer’s onset.
Monday, April 13, 2015
Cancer Treatment with KU Origins Enters Second Clinical Trial
Cleave Biosciences has begun a Phase 1 clinical trial to evaluate CB-5083.
Thursday, February 05, 2015
KanPro Research Begins Work as 25th KU Startup Company
New startup company designed to tackle protein production.
Friday, June 20, 2014
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Promising Drug Combination for Advanced Prostate Cancer
A new drug combination may be effective in treating men with metastatic prostate cancer. Preliminary results of this new approach are encouraging and have led to an ongoing international study being conducted in 196 hospitals worldwide.
A Cellular Symphony Responsible for Autoimmune Disease
Broad Institute researchers have used a novel approach to increase our understanding of the immune system as a whole.
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Editing of LIMS Data Made Faster and More Efficient in Matrix Gemini
The latest version of the Matrix Gemini LIMS (Laboratory Information Management System) from Autoscribe Informatics now provides faster and more efficient editing of LIMS data by eliminating the need for a second editing screen.
University of Edinburgh, Selcia Achieve Key Milestones in Drug Development Program
Scientists from the University of Edinburgh, working with Selcia, have successfully passed the 20-month milestone targets of a 30-month Wellcome Trust SDDi £2.5 million project to design novel treatments for sleeping sickness.
Red Clover Genome to Help Restore Sustainable Farming
The Genome Analysis Centre (TGAC) in collaboration with IBERS, has sequenced and assembled the DNA of red clover to help breeders improve the beneficial traits of this important forage crop.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos