Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Microfluidic Chip Helps Solve Cellular Mating Puzzle

Published: Friday, April 27, 2007
Last Updated: Friday, April 27, 2007
Bookmark and Share
Johns Hopkins researchers’ experiments in ultra-small channels unlock secrets in yeast behavior that nayy lead to cancer or other illnesses.

Using a biochemical version of a computer chip, a team led by Johns Hopkins researchers has solved a long-standing mystery related to the mating habits of yeast cells.

The findings, described in the Feb. 18 Advance Online Publication of the journal Nature, shed new light on the way cells send and receive signals from one another and from the environment through a process called signal transduction. That process, when impaired, can lead to cancer or other illnesses.

"Yeast is a very simple single-celled organism, but in many respects it operates much like a human cell," said Andre Levchenko, an assistant professor in the Department of Biomedical Engineering at Johns Hopkins and supervisor of the research team.

"That’s why it’s been studied for many years - because what we find out in yeast often holds true for humans as well. In this study, we looked at how yeast cells signal one another when they want to merge, engaging in a type of mating behavior. Human cells ‘talk’ to one another in a similar way, and it’s important to understand this process."

Yeast cells mate by sending out pheromone designed to catch the attention of nearby cells of the opposite mating type. When a prospective partner picks up this "scent," it alters its shape and sends a projection toward the source of the pheromone, leading to a cellular merger. This mating process is regulated by proteins inside the cell called mitogen-activated protein kinases, or MAPKs, through a chain of chemical reactions.

First, sensors on the surface of a yeast cell pick up signals that a mating partner is nearby. Then the message is passed down toward the cell’s control center, the nucleus. The messengers that carry it to the nucleus are MAPKs, which direct the cell’s response by triggering multiple genes. But biologists have been baffled for years as to why two different forms of MAPKs perk up when the mating call arrives. Only one of them, called Fus3, appeared to be in charge of the courtship process, while the other was thought to be moonlighting away from its main job in another signaling pathway.

"The role of the second type of MAPK was unclear," said Saurabh Paliwal, a doctoral student in Levchenko’s lab and lead author of the Nature article. "Through experiments with a microfluidic chip and with mathematical modeling, we were able to learn that this second MAPK, called Kss1, does play a crucial role. Without it, the mating process does not proceed as smoothly."

The microfluidic chip was invented and patented by a team that included Levchenko and Paliwal, who teamed up with Alex Groisman, a physicist from the University of California, San Diego.

In place of the microscopic electrical circuitry of a computer chip, their device consists of a series of tiny channels and chambers, some 20 times smaller than the diameter of human hair. Within the chip, computer-controlled fluid pressure and microscopic valves allow the researchers to isolate and conduct experiments on extremely small clusters of cells.

"The level of control we can achieve on the conditions affecting just a few cells is unbelievable," Levchenko said. "This is far beyond what you can do in a traditional biology lab dish that’s filled with a large colony of cells."

Using cameras attached to a microscope, the researchers were able to view a microfluidic chip and study the mating behavior of yeast cells in response to different concentrations of pheromone in the presence or absence of Kss1. They were surprised to find that this second MAPK, thought to be relatively unimportant, actually helped the yeast cells do a better job of finding a mate through two distinct functions.

First, it helped cells diversify their responses at low pheromone concentrations, so that only a small fraction of cells might engage in expensive mating behavior, which consumes a lot of cellular resources. Second, in the cells that were attempting to mate, Kss1 improved the precision of finding the partner.

The researchers said their findings show the importance of unraveling the role of multiple, apparently redundant proteins that are often activated by the same message passing through a cell. They also address why cells do not get confused when they are activated by multiple signaling messengers. Such findings may help produce medications with fewer side effects and others that target mutations associated with cancer.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

‘Mini-Brains’ to Study Zika
Novel tool expected to speed research on brain and drug development.
Wednesday, April 27, 2016
Hepatitis C Virus Testing Guidelines Miss Too Many Cases
Urban emergency departments a good place to enact universal screening for adults.
Friday, April 15, 2016
How Cancer Stem Cells Thrive When Oxygen Is Scarce
Scientists from The John Hopkins University show cancer stem cells thrive in low oxygen environments using similar mechanisms to embryonic stem cells.
Wednesday, March 30, 2016
Tiny Lab Devices Could Attack Huge Problem of Drug-Resistant Infections
NIH-funded project aims for fast identification and destruction of deadly bacteria.
Monday, April 27, 2015
Triple-Negative Breast Cancer Immune Therapy
Experimental immune therapy tested in preliminary study of women with triple-negative breast cancer.
Tuesday, April 21, 2015
A New Tool for Understanding ALS: Patients’ Brain Cells
Researchers create a free public library of versatile stem cells from ALS patients.
Thursday, April 16, 2015
Tumor-Only Genetic Sequencing May Misguide Cancer Treatment in Nearly Half of All Patients
Johns Hopkins scientists say the genetic code of tumors must be compared to patients’ noncancer genome to get a true picture.
Thursday, April 16, 2015
New Cancer-Fighting Strategy Would Harden Cells to Prevent Metastasis
Potential drug for pancreatic cancer now being tested in animals.
Thursday, January 22, 2015
Training the Immune System to Destroy Cure-Defying Mutant HIV
This study reveals the reason behind the failure of luring HIV out of hiding, and charts a therapeutic strategy to eradicate mutant HIV-infected cells.
Thursday, January 08, 2015
New Genetic and Epigenetic Contributors to Diabetes Identified
Comparison of fat cells in mice and men hints at how genes and environment conspire to produce disease.
Wednesday, January 07, 2015
When DNA Gets Sent to Time-Out
New details revealed in the coordinated regulation of large stretches of DNA.
Tuesday, January 06, 2015
CRISPR Shows Promise in Engineering Human Stem Cells
Johns Hopkins study could advance use of stem cells for treatment and disease research.
Monday, January 05, 2015
Multiple Allergic Reactions Traced To Single Protein
Points to new strategy to reduce allergic responses to many medications.
Thursday, December 18, 2014
Brain Inflammation A Hallmark Of Autism
Johns Hopkins study is largest so far of gene expression in autism brains.
Thursday, December 11, 2014
Up-close Look at Cancer on the Move
Microscopic view of metastasis could give insight about how to keep cancer in check.
Friday, November 07, 2014
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Breast Cancer Drug Hope
A drug for breast cancer that is more effective than existing medicines may be a step closer thanks to new research.
Untangling Disease-Related Protein Misfolding
Work advances understanding of genetic forms of thrombosis, emphysema, cirrhosis of the liver, neurodegenerative diseases and inflammation, among others.
Early Genetic Changes in Premalignant Colorectal Tissue Identified
Findings point to drivers of early cancer development, targets for cancer prevention therapies.
Harnessing Nature’s Vast Array of Venoms for Drug Discovery
Scripps scientists have developed a method for rapidly identifying venoms.
Nanoparticles Target, Transform Fat Tissue
Nanoparticles designed to target white fat and convert it to calorie-burning brown fat slowed weight gain in obese mice without affecting food intake. This proof-of-concept work could lead to new therapies to treat obesity.
New Cancer Fighters Emerge From Lab
Rice University lab simplifies total synthesis of anti-cancer agent.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!