Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

When Smell Cells Fail they Call in Stem Cell Reserves

Published: Tuesday, May 01, 2007
Last Updated: Tuesday, May 01, 2007
Bookmark and Share
Hopkins researchers have identified a backup supply of stem cells that can repair the damage to the nerves responsible for smelling sense.

Johns Hopkins researchers have identified a backup supply of stem cells that can repair the most severe damage to the nerves responsible for our sense of smell. These reservists normally lie around and do nothing, but when neighboring cells die, the scientists say, the stem cells jump into action.

A report on the discovery will appear online next week in Nature Neuroscience.

"These stem cells act like the Army Reserves of our nose," explains lead author Randall Reed, Ph.D., a professor of neuroscience at Johns Hopkins, "supporting a class of active-duty stem cells that help repair normal wear and tear. They don't come in until things are really bad."

The only nerve cells in the body to run directly from the brain to the outside world, olfactory cells are under constant assault from harsh chemicals that one might happen to catch a whiff of by accident, risking damage or death.

To figure out how the olfactory system repairs severely damaged nerve cells, Reed's team exposed mouse olfactory nerves to a cloud of toxic methyl-bromide gas.

Methyl bromide kills not only olfactory nerve cells but also neighboring, non-nerve cells in the nasal passage. Three weeks after chemical exposure, the researchers examined nasal cells to see which, if any, had grown back.

They discovered that the newly grown cells, both nerve and non-nerve, grew from HBCs-a population of cells not previously known for repair abilities.

"We were stunned because HBCs normally don't grow much or do anything," says Reed. "And the most surprising thing is that HBCs can grow into both nerves and non-nerve cells; they do so by generating the other active type of nasal stem cell."

The team then went back and looked at nerve repair under less damaging circumstances where only the olfactory nerve cells are killed. In this situation, the HBCs did nothing to repair the damaged cells; rather, they allowed the previously known stem cells to do all the repair work.

"The ability to smell is crucial for eating, mating and survival, and it's important that the olfactory system be fully operational all the time," explains Reed. "The HBCs act as a fail-safe to ensure continued function of the sense of smell."

The discovery of these two distinct types of stem cells in one neural tissue is a first, says Reed, who is interested to see if other types of nerves in the body have similar repair mechanisms in play.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protein Reinforces Growth of Damaged Muscles
Biologists have found a protein involved in stem cells that bolsters damaged muscle tissue growth - potential for muscle degeneration treatments.
Wednesday, July 20, 2016
‘Mini-Brains’ to Study Zika
Novel tool expected to speed research on brain and drug development.
Wednesday, April 27, 2016
Hepatitis C Virus Testing Guidelines Miss Too Many Cases
Urban emergency departments a good place to enact universal screening for adults.
Friday, April 15, 2016
How Cancer Stem Cells Thrive When Oxygen Is Scarce
Scientists from The John Hopkins University show cancer stem cells thrive in low oxygen environments using similar mechanisms to embryonic stem cells.
Wednesday, March 30, 2016
Tiny Lab Devices Could Attack Huge Problem of Drug-Resistant Infections
NIH-funded project aims for fast identification and destruction of deadly bacteria.
Monday, April 27, 2015
Triple-Negative Breast Cancer Immune Therapy
Experimental immune therapy tested in preliminary study of women with triple-negative breast cancer.
Tuesday, April 21, 2015
A New Tool for Understanding ALS: Patients’ Brain Cells
Researchers create a free public library of versatile stem cells from ALS patients.
Thursday, April 16, 2015
Tumor-Only Genetic Sequencing May Misguide Cancer Treatment in Nearly Half of All Patients
Johns Hopkins scientists say the genetic code of tumors must be compared to patients’ noncancer genome to get a true picture.
Thursday, April 16, 2015
New Cancer-Fighting Strategy Would Harden Cells to Prevent Metastasis
Potential drug for pancreatic cancer now being tested in animals.
Thursday, January 22, 2015
Training the Immune System to Destroy Cure-Defying Mutant HIV
This study reveals the reason behind the failure of luring HIV out of hiding, and charts a therapeutic strategy to eradicate mutant HIV-infected cells.
Thursday, January 08, 2015
New Genetic and Epigenetic Contributors to Diabetes Identified
Comparison of fat cells in mice and men hints at how genes and environment conspire to produce disease.
Wednesday, January 07, 2015
When DNA Gets Sent to Time-Out
New details revealed in the coordinated regulation of large stretches of DNA.
Tuesday, January 06, 2015
CRISPR Shows Promise in Engineering Human Stem Cells
Johns Hopkins study could advance use of stem cells for treatment and disease research.
Monday, January 05, 2015
Multiple Allergic Reactions Traced To Single Protein
Points to new strategy to reduce allergic responses to many medications.
Thursday, December 18, 2014
Brain Inflammation A Hallmark Of Autism
Johns Hopkins study is largest so far of gene expression in autism brains.
Thursday, December 11, 2014
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
Human Stem Cells to Rapidly Generate Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Mechanism of Tuberculosis Infection
Researchers at UTSW Medical Center have identified a new way that tuberculosis bacteria get into the body, revealing a potential therapeutic angle to explore.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Eliminating Doubt in Criminal Investigations
New ASU certificate to help curb error, misunderstanding in the quest for justice.
Determination of 13 Organic Toxicants in Human Blood
Researchers have utilised liquid-liquid extraction coupling HPLC-MS/MS to identify and quantify organic toxicants in human blood.
A Novel Cell Culture Model For Forensic Biology Experiments
Researchers have developed a new cell culture model which provides an efficient research tool in forensic biology.
Rhino DNA Bank Aids Anti-Poaching Fight
At the University of Pretoria's Veterinary Genetics Laboratory (VGL) at Onderstepoort, Dr Cindy Harper and her team have developed a ground-breaking technique to collect and catalogue DNA from rhinos and rhino horns.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!