Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

amaxa to Co-ordinate Collaboration to Develop High Throughput Devices for Primary Cell Transfection

Published: Monday, July 02, 2007
Last Updated: Monday, July 02, 2007
Bookmark and Share
amaxa receives a €2.75M grant from European Commission to develop devices for use in the study of immunological, neuronal and liver disorders.

amaxa AG has announced that it will co-ordinate a European collaboration of eight partners to develop devices for ultra high-throughput delivery and screening of primary cells, for use in the study of immunological, neuronal and liver disorders.

The collaboration has been granted over €2.75 million in funding from the EC and will use amaxa’s Nucleofector® Technology – a method for the transfection of primary cells.

The 36-month project, named MODEST-EU, is a collaboration between amaxa AG (Germany), Deutsches Rheumaforschungszentrum (Germany), RNAx GmbH (Germany), Protobios Ltd (Estonia), Fotec Forschungs- und Technologietransfer GmbH (Austria), HTP High Tech Plastics AG (Austria), Dominion Pharmakine SL (Spain) and Prevas AB (Sweden).

The devices developed using amaxa’s Nucleofector® Technology will represent the world’s first technology enabling high-throughput screenings in transfected and differentiated primary cells. The project will go on to study the application of this technology in the areas of immunology, neurology and liver disorders.

Dr. Birgit Nelsen-Salz, coordinator of the project, said “amaxa is the only institution worldwide, which has the necessary knowledge and experience to adapt the technical needs of device development to the conditions used for efficient transfection of primary cells and hard-to-transfect cell lines. As co-ordinator of the project we will ensure that the expertise brought by each partner will enable the collaboration to achieve the goal of providing powerful new tools for basic research and drug discovery”.

Each partner will play a significant role in the development of the devices: Prevas will be responsible for the building of the device from proof-of-principle up to prototype; Fotec will develop the production process for micro-plates; HTP will be involved in the prototyping of the 384-well plates.

In addition, the application of nucleofection and cell based assays will be assessed by a team of outstanding experts: DRFZ (cell sorting and multiparameter flow-cytometry), RNAx (RNAi technology), Protobios (nervous system development and transcription regulation network) and Dominion Pharmakine (biomarkers related to site specific development of liver metastasis).

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Amaxa to Host Webinar on the Nucleofection® of Stem Cells
The webinar imparts knowledge about setting up embryonic, mesenchymal, hematopoietic or neural stem cell experiments using Nucleofector® Technology.
Thursday, May 01, 2008
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos