Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genes may Hold Keys to How Humans Learn

Published: Monday, October 08, 2007
Last Updated: Monday, October 08, 2007
Bookmark and Share
New research has implications not only for those with Parkinson's, but developing teaching strategies for students as well, researchers say.

Michael Frank, an assistant professor of psychology and director of the Laboratory for Neural Computation and Cognition at The University of Arizona, headed a team whose results are reported in the Oct. 1 issue of Early Edition, a Web site hosted by the Proceedings of the National Academy of Sciences.

Frank and his colleagues found links to learning behaviors in three separate genes associated with dopamine. Dopamine is a neurotransmitter, a chemical in the brain that is often associated with pleasure, learning and other behaviors. Several neurological disorders, such as Parkinson's disease, are also linked to abnormal levels of dopamine.

Frank's study points to fundamental genetic differences between "positive" and "negative" learners.

"All three genes affect brain dopamine functioning, but in different ways, and in different parts of the brain," Frank said. "The genes predicted people's ability to learn from both the positive and negative outcomes of their decisions."

Two of the genes – DARPP-32 and DRD2 – predicted learning about the average, long-term probability of rewards and punishments, not unlike your personal preference for why, for example, you might choose steak over salmon.

"When making these kinds of choices, you do not explicitly recall each individual positive and negative outcome of all of your previous such choices. Instead, you often go with your gut, which may involve a more implicit representation of the probability of rewarding outcomes based on past experience," Frank said.

The DARPP-32 and DRD2 genes control dopamine function in a region of the brain called the striatum, thought to be necessary for this kind of implicit reward learning. A third gene, COMT, did not predict long-term reward or punishment learning, but instead predicted a person's tendencies to change choice strategies after a single instance of negative feedback. Frank said this gene affects dopamine function in the prefrontal cortex of the brain, the area associated with conscious processing and working memory. This would be akin to switching from steak to salmon upon remembering your last experience with overdone steak.

The overall research program was designed to test a computer model that simulates the key roles of dopamine in reinforcement learning in different parts of the brain, as motivated by a body of biological research.

"The reason we looked at these three individual genes in the first place, out of a huge number of possible genes, is that we have a computer model that examines how dopamine mediates these kinds of reinforcement processes in the striatum and prefrontal cortex," Frank said. "The model makes specific predictions on how subtle changes in different aspects of dopamine function can affect behavior, and one way to get at this question is to test individual genes."

Among the evidence incorporated in the model and motivating the genetic study is research showing that bursts of dopamine production follow in the wake of unexpected rewards. Conversely, dopamine production declines when rewards are expected but not received.

To test their hypothesis, the researchers collected DNA from 69 healthy people who were asked to perform a computerized learning program. The volunteers were asked to pick one of two Japanese characters that appeared on a screen and were "rewarded" for a "correct" response, and "punished" for an "incorrect" one.

Frank said more research is needed to confirm that genetic effects are accompanied by brain-related changes in behavior. But, he said, the research offers insights into the genetic basis for learning differences and insights into improving human cognition and learning, both normal and abnormal.

"Understanding how dopaminergic variations affects learning and decision-making processes may have substantial implications for patient populations, such as (those with) Parkinson's disease, attention-deficit hyperactivity disorder and schizophrenia," Frank said. "The genetics might also help us identify individuals who might gain from different types of learning environments in the classroom."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

UA Researchers Closer to Preventing Asthma
UA Researchers have received a federal grant to lead a national clinical study with the aim of working toward a cure for asthma.
Tuesday, May 17, 2016
New Device Reduces Time to Diagnose Infections
A new diagnostic device created by a collaborative team of UA engineers and scientists may significantly reduce the amount of time necessary to diagnose tissue infections.
Wednesday, September 09, 2015
Researchers Reveal Elusive Molecule
A long-standing chemistry puzzle has been solved, with potential implications ranging from industrial processes to atmospheric chemistry.
Wednesday, July 15, 2015
Researchers Link Liver Disease and Drug Metabolism
Researchers have discovered that nonalcoholic steatohepatitis, an increasingly common but often undiagnosed liver disease, could have significant medical implications for people with type 2 diabetes.
Monday, July 13, 2015
Scientists Develop An intensity-incorporated Protein Identification Algorithm for Tandem Mass Spectrometry
Scientists from the University of Arizona, have identified a protein identification algorithm, called SeQuence IDentfication (SQID), which makes use of the coarse intensity from a statistical analysis.
Monday, January 10, 2011
Gene transfer from transgenic crops: A more realistic picture
A comprehensive, data-driven statistical model including the surrounding landscape, pollinating insects and human seed dispersal allows for more accurate prediction of gene flow between crop plants
Wednesday, December 01, 2010
Combining Bt Cotton, Sterile Insects Prevents Destruction of Cotton Plants
University of Arizona researchers have found that combining pest-resistant cotton and large numbers of sterile moths will prevent these destructive insects from damaging cotton plants in Arizona.
Tuesday, November 09, 2010
Scientific News
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Anthrax Proteins Might Help Treat Cancerous Tumors
Studies in mice reveal novel treatment regimen.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
Key to Chronic Fatigue Syndrome is in Your Gut, Not Head
Researchers report they have identified biological markers of the disease in gut bacteria and inflammatory microbial agents in the blood.
HIV Structure Stabilized
Findings represent ‘big accomplishment’ in biomedical engineering and design.
Four Newly-Identified Genes Could Improve Rice
A Japanese research team have applied a method used in human genetic analysis to rice and rapidly discovered four new genes that are potentially significant for agriculture. These findings could influence crop breeding and help combat food shortages caused by a growing population.
New Cancer Drug Target in Dual-Function Protein
Scientists at The Scripps Research Institute (TSRI) have identified a protein that launches cancer growth and appears to contribute to higher mortality in breast cancer patients.
Antibodies To Dengue May Alter Course Of Zika Virus Infection
Scientists at Emory Vaccine Center, in collaboration with investigators from Thailand, have found that people infected with dengue virus develop antibodies that cross-react with Zika virus.
Some Women With PCOS May Have Adrenal Disorder
Researchers at NIH have found that a subgroup of women with PCOS, a leading cause of infertility, may produce excess adrenal hormones.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!