Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Scientists Synthesize Memory in Yeast Cells

Published: Tuesday, September 11, 2007
Last Updated: Monday, October 15, 2007
Bookmark and Share
Researchers in the Harvard Medical School Department of Systems Biology have constructed a memory loop out of bits of DNA.

Harvard Medical School researchers have successfully synthesized a DNA-based memory loop in yeast cells, findings that mark a significant step forward in the emerging field of synthetic biology.

After constructing genes from random bits of DNA, researchers in the lab of Professor Pamela Silver, a faculty member in Harvard Medical School’s Department of Systems Biology, not only reconstructed the dynamics of memory, but also created a mathematical model that predicted how such a memory “device” might work.

“Synthetic biology is an incredibly exciting field, with more possibilities than many of us can imagine,” says Silver, lead author of the paper to be published in the September 15 issue of the journal Genes and Development. “While this proof-of-concept experiment is simply one step forward, we’ve established a foundational technology that just might set the standard of what we should expect in subsequent work.”

Like many emerging fields, there’s still a bit of uncertainty over what, exactly, synthetic biology is. Ask any three scientists for a definition, and you’ll probably get four answers.

Some see it as a means to boost the production of biotech products, such as proteins for pharmaceutical uses or other kinds of molecules for, say, environmental clean-up. Others see it as a means to creating computer platforms that may bypass many of the onerous stages of clinical trials.

 In such a scenario, a scientist would type the chemical structure of a drug candidate into a computer, and a program containing models of cellular metabolism could generate information on how people would react to that compound.

Either way, at it’s core, synthetic biology boils down to gleaning insights into how biological systems work by reconstructing them. If you can build it, it forces you to understand it.

A team in Silver’s Harvard Medical School lab led by Caroline Ajo-Franklin, now at Lawrence Berkeley National Laboratory, and postdoctoral scientist David Drubin decided to demonstrate that not only could they construct circuits out of genetic material, but they could also develop mathematical models whose predictive abilities match those of any electrical engineering system.

“That’s the litmus test,” says Drubin, “namely, building a biological device that does precisely what you predicted it would do.”

The components of this memory loop were simple: two genes that coded for proteins called transcription factors.

Transcription factors regulate gene activity. Like a hand on a faucet, the transcription factor will grab onto a specific gene and control how much, or how little, of a particular protein the gene should make.

The researchers placed two of these newly synthesized, transcription factor-coding genes into a yeast cell, and then exposed the cell to galactose (a kind of sugar). The first gene, which was designed to switch on when exposed to galactose, created a transcription factor that grabbed on to, and thus activated, the second gene.

It was at this point that the feedback loop began.

The second gene also created a transcription factor. But this transcription factor, like a boomerang, swung back around and bound to that same gene from which it had originated, reactivating it. This caused the gene to once again create that very same transcription factor, which once again looped back and reactivated the gene.

In other words, the second gene continually switched itself on via the very transcription factor it created when it was switched on.

The researchers then eliminated the galactose, causing the first synthetic gene, the one that had initiated this whole process, to shut off. Even with this gene gone, the feedback loop continued.

“Essentially what happened is that the cell remembered that it had been exposed to galactose, and continued to pass this memory on to its descendents,” says Ajo-Franklin. “So after many cell divisions, the feedback loop remained intact without galactose or any other sort of molecular trigger.”

Most important, the entire construction of the device was guided by the mathematical model that the researchers developed.

“Think of how engineers build bridges,” says Silver. “They design quantitative models to help them understand what sorts of pressure and weight the bridge can withstand, and then use these equations to improve the actual physical model. We really did the same thing. In fact, our mathematical model not only predicted exactly how our memory loop would work, but it informed how we synthesized the genes.”

For synthetic biology, this kind of specificity is crucial. “If we ever want to create biological black boxes, that is, gene-based circuits like this one that you can plug into a cell and have it perform a specified task, we need levels of mathematical precision as exact as the kind that go into creating computer chips,” she adds.

The researchers are now working to scale-up the memory device into a larger, more complex circuit, one that can, for example, respond to DNA damage in cells.

“One day we’d like to have a comprehensive library of these so-called black boxes,” says Drubin. “In the same way you take a component off the shelf and plug it into a circuit and get a predicted reaction, that’s what we’d one day like to do in cells.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A Natural History of Neurons
Diverse mutations reveal lineage of brain cells.
Monday, October 05, 2015
The Final Word on STAP
Researchers fail to replicate STAP study; computational analysis reveals genomic inconsistency.
Monday, September 28, 2015
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tuesday, August 25, 2015
Combo Tool
Joining molecular components expands ability to manipulate genes in specific cell types.
Tuesday, August 25, 2015
The Autism-GI Link
Inflammatory bowel disease found more prevalent in ASD patients.
Tuesday, August 18, 2015
Facebook for the Proteome
Researchers have developed a network for describing protein-protein interactions that can then be used to examine protein interactions that may have biological or clinical significance.
Friday, July 17, 2015
Bedside Ebola Diagnostic
A new test can accurately diagnose Ebola virus disease within minutes, providing clinicians with crucial information for treating patients and containing outbreaks.
Tuesday, June 30, 2015
HIV Paradox
Investigators from Harvard Medical School, Massachusetts General Hospital, and the Ragon Institute of MGH, MIT and Harvard have added another piece to the puzzle of how a small group of individuals known as elite controllers are able to control HIV infection without drug treatment.
Tuesday, June 16, 2015
Rapid Determination of the Chromosomal Phase of Genetic Variants
Researchers have developed a rapid, scalable, and cost-effective method for chromosomal phasing that provides researchers with a new method to determine if genetic variants are linked on the same chromosome.
Wednesday, June 03, 2015
Sequence, Shuffle, Repeat
Researchers identify origin of chromosomal oddity in some cancer cells.
Monday, June 01, 2015
FISHing for Insight
Improved imaging illuminates chromosomes in detail.
Tuesday, May 26, 2015
On Time, On Target
A novel tool could help personalize cancer treatments.
Monday, March 02, 2015
Paper Test for Ebola
Prototype is designed to detect diseases and deliver real-time epidemiological data.
Friday, February 06, 2015
New Techniques Reveal “Extreme” Gene Copy Range
New findings give scientists the first precise way to study places in the genome where the number of copies of a sequence varies widely from person to person.
Monday, February 02, 2015
Predicting Sepsis
Altered white-blood-cell motion in burn patients may warn of infection.
Thursday, December 18, 2014
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Promising Drug Combination for Advanced Prostate Cancer
A new drug combination may be effective in treating men with metastatic prostate cancer. Preliminary results of this new approach are encouraging and have led to an ongoing international study being conducted in 196 hospitals worldwide.
A Cellular Symphony Responsible for Autoimmune Disease
Broad Institute researchers have used a novel approach to increase our understanding of the immune system as a whole.
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Editing of LIMS Data Made Faster and More Efficient in Matrix Gemini
The latest version of the Matrix Gemini LIMS (Laboratory Information Management System) from Autoscribe Informatics now provides faster and more efficient editing of LIMS data by eliminating the need for a second editing screen.
University of Edinburgh, Selcia Achieve Key Milestones in Drug Development Program
Scientists from the University of Edinburgh, working with Selcia, have successfully passed the 20-month milestone targets of a 30-month Wellcome Trust SDDi £2.5 million project to design novel treatments for sleeping sickness.
Red Clover Genome to Help Restore Sustainable Farming
The Genome Analysis Centre (TGAC) in collaboration with IBERS, has sequenced and assembled the DNA of red clover to help breeders improve the beneficial traits of this important forage crop.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos