Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene, Stem Cell Therapy only needs to be 50 Percent Effective to Create a Healthy Heart, MU Researchers Find

Published: Thursday, November 01, 2007
Last Updated: Thursday, November 01, 2007
Bookmark and Share
Researchers have demonstrated that a muscular dystrophy patient should be able to maintain a normal lifestyle if only 50 percent of the cells of the heart are healthy.

According to a new study, recently published in Circulation Research, a journal of the American Heart Association, University of Missouri-Columbia researchers have demonstrated that a muscular dystrophy patient should be able to maintain a normal lifestyle if only 50 percent of the cells of the heart are healthy.

Patients with Duchenne muscular dystrophy and Becker muscular dystrophy have a gene mutation that disrupts the production of a protein known as dystrophin. Absence of this protein starts a chain reaction that eventually leads to muscle cell degeneration and death. Eventually, the damaged muscle tissue is replaced by fibrous, bony or fatty tissue and loses function. In the heart, this leads to severe heart disease and can place severe limitations on individuals afflicted with the disease.

In the past, scientists believed that the only way to have a healthy heart was to rid the heart of all damaged tissue. The heart is considered to be a “synchronized organ;” therefore, it was believed that the heart needed to maintain 100 percent normal cells in order to stay healthy.

In gene therapy, mutated genes are replaced with healthy genes. In stem cell therapy, diseased cells are replaced with healthy cells. However, in these gene and stem cell therapies, it is not feasible to fix every cell in the heart. Previously, scientists were uncertain whether partial correction could benefit patients.

“In our study, we found that a heart with 50 percent normal cells looks like a normal heart,” said Dongsheng Duan, an associate professor of molecular microbiology and immunology at the MU School of Medicine. “More importantly, it acts like a normal heart. This is the first time that we have concrete evidence that partial gene or cell therapies will be effective for preventing heart disease in a mouse model of muscular dystrophy.”

“It’s important to note that this could improve the quality of life for individuals who have this heart condition,” said Brian Bostick, a doctoral student in molecular microbiology and immunology and the first author of the study. “We’re also looking at this as a possible way to prevent heart disease. If we can treat it early through gene therapy or cell therapy, we know now that it can be very beneficial for patients.”

The MU researchers said that this finding would have a positive impact on the ongoing gene and cell therapy studies in animal models of muscular dystrophy as well as in human patients. It also raises the hope of developing effective gene and cell therapies for patients suffering from other heart diseases.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Bacteria Implicated in Reproductive Disorders
Bacteria harbored in the male reproductive system may be responsible for prostatitis.
Thursday, March 17, 2016
Researchers Discover A New Mechanism of Proteins to Block HIV
Certain IFITM proteins block and inhibit cell-to-cell transmission of HIV.
Tuesday, September 29, 2015
Scientists Successfully Edit Genes of Dengue Fever Mosquitoes
This research could lead to methods for preventing mosquito-borne diseases.
Monday, September 07, 2015
Unraveling the Elusive Structure of HIV Protein
Snapshots of HIV virus’ proteins may help design new ways to fight the disease.
Monday, July 06, 2015
Key Component in Protein that Causes Cystic Fibrosis Identified
Scientists hope that this finding may lay the foundations for the development of new medications and improved therapies.
Thursday, May 21, 2015
Green Tea Extract and Exercise Hinder Progress of Alzheimer’s
A study led by University of Missouri researchers has determined that a compound found in green tea, and voluntary exercise, slows the progression of the disease in mice and may actually reverse its effects.
Thursday, May 07, 2015
New Transitional Stem Cells Discovered
New stem cells are easier to manipulate, could help future research on reproductive problems.
Friday, April 17, 2015
MU Researchers Discover Protein's Ability To Inhibit HIV Release
TIM-family proteins have the ability to block the release of HIV and other viruses.
Wednesday, August 27, 2014
MU Scientists Successfully Transplant, Grow Stem Cells in Pigs
New line of pigs do not reject transplants, will allow for future research on stem cell therapies.
Saturday, June 07, 2014
Stem Cells Successfully Transplanted and Grown in Pigs
New line of pigs do not reject transplants, which will allow for future research on stem cell therapies.
Thursday, June 05, 2014
Adult Stem Cells Could Hold Key to Creating Cure for Type 1 Diabetes
Combining bone marrow cells with new drug restores insulin production.
Tuesday, June 04, 2013
MU Scientists Build Harness for Powerful Radiation Cancer Therapy
Scientists created a gold nanoparticle that can transport powerful radioactive particles directly to tumors for treatment.
Thursday, February 07, 2013
Identical DNA Codes Discovered in six Plant Species safter 32 billion searches
Analyzing massive amounts of data officially became a national priority recently when the White House Office of Science and Technology Policy announced the Big Data Research and Development Initiative. A multi-disciplinary team of University of Missouri researchers rose to the big data challenge when they solved a major biological question by using a groundbreaking computer algorithm to find identical DNA sequences in different plant and animal species.
Tuesday, April 10, 2012
Achieving Coexistence of Biotech, Conventional and Organic Foods in the Marketplace
Meeting at Vancouver, Canada, October 26-28, 2011; GMCC Coexistence Conference
Thursday, April 21, 2011
Researchers Grow Neural Blood Vessel Cells from Adult Stem Cells
Scientists develop adult stem cells from the blood of an mature animal that were able to be directed into specific cell types.
Monday, September 25, 2006
Scientific News
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Apricot Kernels Pose Risk of Cyanide Poisoning
Eating more than three small raw apricot kernels, or less than half of one large kernel, in a serving can exceed safe levels. Toddlers consuming even one small apricot kernel risk being over the safe level.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
A lncRNA Regulates Repair of DNA Breaks in Breast Cancer Cells
Findings give "new insight" into biology of tough-to-treat breast cancer.
COPD Linked to Increased Bacterial Invasion
Persistent inflammation in COPD may result from a defect in the immune system that allows airway bacteria to invade deeper into the lung.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!