Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

BCM Human Microbiome Projects to Sequence 150 Bacteria, Sample Human Metagenome

Published: Tuesday, November 06, 2007
Last Updated: Tuesday, November 06, 2007
Bookmark and Share
A $2.3 million NHGRI grant will enable researchers to determine the genetic code of bacteria that colonize healthy humans and study the structure of microbial communities from five regions of the human body.

A $2.3 million grant from the National Human Genome Research Institute will enable researchers at the Baylor College of Medicine Human Genome Sequencing Center in Houston to determine the genetic code of bacteria that colonize healthy humans and study the structure of microbial communities from five regions of the human body.

The grant is part of the first phase of the Human Microbiome Project, a Roadmap initiative of the National Institutes of Health, which will request proposals for sequencing individual bacteria that normally inhabit various parts of the human body as well as metagenomic sequencing of the communities that these bacteria create.

The Roadmap grant adds to ongoing pilot Human Microbiome Projects at the BCM Human Genome Sequencing Center, supported by the National Human Genome Research Institute, one of the National Institutes of Health. Altogether the microbiome activities will produce reference sequences for 150 bacteria and sample the communities from the gut, vagina, skin, mouth and nose.

"The Human Microbiome Project seeks to describe the microbial community that colonizes you," said Dr. George Weinstock, co-director of the BCM Human Genome Sequencing Center and principal investigator of its bacterial sequencing activity. "It also seeks to understand how this community changes and correlate those changes with health, disease and new opportunities for early diagnosis."

The project also provides opportunities for new treatments and therapies that are either preventive or reactive to disease, said Weinstock, who has been a leader in developing this research area.

"That's the whole idea of probiotics – manipulating your microbial communities," he said. The studies could lead to new understanding of a host of diseases – even some kinds of cancers.

In many ways, the Human Microbiome Project is more ambitious than the Human Genome Project was at the beginning.

"Next generation DNA sequencing technology, which enables us to produce genetic sequences quickly and accurately, has finally reached a state where such a large project is possible," said Dr. Richard Gibbs, director of the BCM Human Genome Sequencing Center.

The effort will start with determining the genetic sequence of various bacteria that colonize humans, he said. Then researchers plan to look for variation among individuals and populations.

"Are there different types or combinations?" said Weinstock. "Is there one type of flora in this group of people and another in a different group?"

Then the project will transition into metagenomics – determining the genetic sequence of communities of bacteria that colonize human beings.

"We are colonized by thousands of species of bacteria," said Weinstock. "There are only 20,000 or so genes in my genome and all my cells have the same genes. Each bacterium has on the order of 1,000 genes, but there are thousands of species of bacteria and each has different genes. That means there are millions of bacterial genes in you. Collectively, they are a metagenome. You carry them with you, and the activity of their genes affects you. We want to do the DNA sequencing on the community itself."

"One of the major selective forces in all evolution has been micro-organisms," said Weinstock. "Nothing has happened in evolution that didn't have microbes crawling all over it."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Baylor, DNAnexus Collaborate
Partnership sets out to develop HgV, a new iteration of HGSC's Mercury, a BCM-developed data processing and variant calling pipeline for analyzing and annotating next-generation sequencing data in research and clinical contexts.
Tuesday, June 23, 2015
Baylor, TGen Collaborate on Personalized Cancer Treatment Options
The companies will collaborate on precision medicine for cancer patients by offering liquid biopsies, performing gene sequencing, conducting clinical trials, and creating personalized vaccines.
Tuesday, May 26, 2015
Role of Cancer Stem Cells in Chemo-Resistance
'Wound response' of cancer stem cells may explain chemo-resistance in bladder cancer.
Friday, December 05, 2014
Massimo Pietropaolo Named McNair Scholar at Baylor
World renowned physician-scientist in type 1 diabetes research, Dr. Massimo Pietropaolo, has been named McNair Scholar at Baylor College of Medicine.
Wednesday, October 29, 2014
Clinical Integration of NGS
Experts provide much-needed policy analysis for clinical integration of next generation sequencing.
Tuesday, September 23, 2014
Collaboration Unravels Novel Mechanism for Neurological Disorder
The novel gene (CLP1) associated with a neurological disorder affecting both the peripheral and central nervous systems.
Saturday, April 26, 2014
$3M NIH Grant Enables Baylor International HIV/AIDS Program
Researchers to study genetic differences of disease in sub-Saharan African children.
Wednesday, February 19, 2014
Baylor College of Medicine, Berry Genomics Co. Seek to Improve on Prenatal Genetic Tests
Teams aim to improve prenatal genetic testing by combining BCM’s expertise in using microarrays for DNA analysis and Berry’s non-invasive technology evaluating fetal DNA in maternal plasma.
Monday, January 07, 2013
Microarray Analysis Improves Prenatal Diagnosis
A "chip" or array that can quickly detect disorders such as Down syndrome, or other diseases associated with chromosomal abnormalities, has proved an effective tool in prenatal diagnosis in 300 cases, as reported by Baylor College of Medicine.
Tuesday, November 29, 2011
Experimental Drug Targets Chemo-Resistant Breast Cancer Stem Cells
The cells that remain after treatment that could potentially refuel tumor growth, researchers say.
Monday, December 14, 2009
Protein 'Tubules' Free Avian Flu Virus from Immune Recognition
Two domains or portions of the protein NS1 combine to form tiny tubules where double-stranded RNA is hidden from the immune system, researchers say.
Friday, November 07, 2008
High Throughput Imaging Speeds Analysis of Hormone Receptors
A new high throughput microscopy technique enabled researchers at Baylor College of Medicine to analyze thousands of individual cells expressing androgen receptor.
Monday, November 03, 2008
Lack of Fragile X, Related Gene Disrupts Sleep
Deficiency of the FMR1 gene and a similar gene called FXR2 could account for sleep problems associated with inherited mental impairment.
Friday, June 27, 2008
Ronin Provides Alternate Pathway to Pristine Embryonic Stem Cells
The protein Ronin maintains embryonic stem cells in their undifferentiated state and plays roles in genesis of embryos and their development, researchers say.
Friday, June 27, 2008
Nature Mixes, Matches Genes to Keep Nerve Cells Straight
BCM researchers report that nature has to mix and match thousands of genes to generate the myriad types of neurons needed to assemble the brain and nervous system.
Thursday, June 12, 2008
Scientific News
Breaking Cell Barriers with Retractable Protein Nanoneedles
Adapting a bacterial structure, institute researchers have developed protein actuators that can mechanically puncture cells.
Gene Signature could Lead to a New Way of Diagnosing Lyme Disease
Lyme disease patients had distinctive gene signatures that persisted for at least three weeks, even after they had taken the antibiotics.
Retractable Protein Nanoneedles
The ability to control the transfer of molecules through cellular membranes is an important function in synthetic biology; a new study from researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and Harvard Medical School (HMS) introduces a novel mechanical method for controlling release of molecules inside cells.
Leukemia’s Surroundings Key to its Growth
Researchers at The University of Texas at Austin have discovered that a type of cancer found primarily in children can grow only when signaled to do so by other nearby cells that are noncancerous.
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
‘Smelling’ Prostate Cancer
A research team from the University of Liverpool and the University of the West of England (UWE Bristol) has reached an important milestone towards creating a urine diagnostic test for prostate cancer that could mean that invasive diagnostic procedures that men currently undergo eventually become a thing of the past.
Genetic Mutation that Prevents Diabetes Complications
The most significant complications of diabetes include diabetic retinal disease, or retinopathy, and diabetic kidney disease, or nephropathy. Both involve damaged capillaries.
A Crystal Clear View of Biomolecules
Fundamental discovery triggers paradigm shift in crystallography.
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
NIH Seeks Research Applications to Study Zika in Pregnancy, Developing Fetus
Institute has announced that the new effort seeks to understand virus effect on reproduction and child development.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!