Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Epilepsy Genes may Cancel Each Other

Published: Tuesday, November 06, 2007
Last Updated: Tuesday, November 06, 2007
Bookmark and Share
Inheriting two genetic mutations that can individually cause epilepsy might actually be "seizure-protective," according to Baylor College of Medicine researchers.

Inheriting two genetic mutations that can individually cause epilepsy might actually be "seizure-protective," said Baylor College of Medicine researchers in a report that appeared online in the journal Nature Neuroscience.

"In the genetics of the brain, two wrongs can make a right," said Dr. Jeffrey L. Noebels, professor of neurology, neuroscience and molecular and human genetics at BCM. "We believe these findings have great significance to clinicians as we move toward relying upon genes to predict neurological disease."

In addition, the finding might point the way to new ways of treating epilepsy using gene-directed therapy.

"If you have a potassium channel defect, then a drug blocking certain calcium channels might also benefit you," said Noebels.

Noebels and his colleagues, who included first author Dr. Ed Glasscock, a post-doctoral researcher at BCM, tested this hypothesis by breeding mice with two defective genes that govern ion channels, tiny pores in cells that allow molecules such as potassium and calcium to flow in and out.

The genes were known to cause epilepsy when inherited singly within families. They have also been found in a large-scale screen of people with non-familial seizure disorders being performed in collaboration with the Baylor Human Genome Sequencing Center.

One is a mutation in the Kcna1 gene involved in the channel that allows potassium to flow in and out of the cell. It causes severe seizures affecting the brain's temporal lobe, an area of the brain involved in processing sight, sound, speech and forming memories. It can also cause sudden death in young mice.

The other mutation is in a calcium channel gene (Cacna1a) that causes a specific type of seizure associated with absence epilepsy. When people suffer these seizures, they may appear to be staring into space and do not exhibit the jerking or movements generally associated with epilepsy.

When both types of mutation occurred in the same young mouse, that animal had dramatically reduced seizures and did not suffer the sudden death associated with the potassium channel problem.

Noebels, who is also director of the Developmental Neurogenetics Laboratory funded by the National Institutes of Health and Blue Bird Circle Foundation, said, "Rather than screening for 'bad' genes one at a time, it may be essential to create a complete profile of many or even all genes in order to accurately assess the true genetic risk of any single defect in many common disorders such as epilepsy. Fortunately, this amount of background information will soon become routinely obtainable in individual patients thanks to rapid technological progress in the field of neurogenomics."

Many different genes can lead to seizure disorders. In some cases, they encode ion channels that adjust the way neurons fire. Previous work indicated that combinations of such genes could make epilepsy worse. However, certain combinations may actually prevent the abnormal patterns of epilepsy, acting as "circuit breakers," said Noebels.

The article can be found at http://www.nature.com/neuro/journal/vaop/ncurrent/abs/nn1999.html.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Antibodies Block Norovirus’ Entrance into Cells
Scientists have uncovered a mechanism in the human body that targets and successfully blocks noroviruses.
Tuesday, September 20, 2016
Growing Noroviruses in the Lab
Human noroviruses – the leading viral cause of acute diarrhea around the world – have been difficult to study because scientists had not found a way to grow them in the lab.
Tuesday, August 30, 2016
Neurodvelopmental Disorder Cause Linked to SON Gene
A genetic link has been discovered for a previously unxplained neurodevelopmental disorder.
Tuesday, August 23, 2016
Myeloid-Derived Suppressor Cells Play Role in Tumor Growth
Researchers at Baylor College of Medicine have reported a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.
Friday, May 20, 2016
Largest Genomic Study on Kidney Cancer
Understanding the complexity of cancer is a major goal of the scientific community, and for kidney cancer researchers this goal just got closer.
Wednesday, March 16, 2016
Largest Genomic Study on Kidney Cancer Brings Hope for More Effective Treatments
Researchers at Baylor College of Medicine have found that a pathway called immune checkpoint was most active in a subtype of clear cell kidney cancer that is typically very aggressive.
Tuesday, March 08, 2016
Baylor, DNAnexus Collaborate
Partnership sets out to develop HgV, a new iteration of HGSC's Mercury, a BCM-developed data processing and variant calling pipeline for analyzing and annotating next-generation sequencing data in research and clinical contexts.
Tuesday, June 23, 2015
Baylor, TGen Collaborate on Personalized Cancer Treatment Options
The companies will collaborate on precision medicine for cancer patients by offering liquid biopsies, performing gene sequencing, conducting clinical trials, and creating personalized vaccines.
Tuesday, May 26, 2015
Role of Cancer Stem Cells in Chemo-Resistance
'Wound response' of cancer stem cells may explain chemo-resistance in bladder cancer.
Friday, December 05, 2014
Massimo Pietropaolo Named McNair Scholar at Baylor
World renowned physician-scientist in type 1 diabetes research, Dr. Massimo Pietropaolo, has been named McNair Scholar at Baylor College of Medicine.
Wednesday, October 29, 2014
Clinical Integration of NGS
Experts provide much-needed policy analysis for clinical integration of next generation sequencing.
Tuesday, September 23, 2014
Collaboration Unravels Novel Mechanism for Neurological Disorder
The novel gene (CLP1) associated with a neurological disorder affecting both the peripheral and central nervous systems.
Saturday, April 26, 2014
$3M NIH Grant Enables Baylor International HIV/AIDS Program
Researchers to study genetic differences of disease in sub-Saharan African children.
Wednesday, February 19, 2014
Baylor College of Medicine, Berry Genomics Co. Seek to Improve on Prenatal Genetic Tests
Teams aim to improve prenatal genetic testing by combining BCM’s expertise in using microarrays for DNA analysis and Berry’s non-invasive technology evaluating fetal DNA in maternal plasma.
Monday, January 07, 2013
Microarray Analysis Improves Prenatal Diagnosis
A "chip" or array that can quickly detect disorders such as Down syndrome, or other diseases associated with chromosomal abnormalities, has proved an effective tool in prenatal diagnosis in 300 cases, as reported by Baylor College of Medicine.
Tuesday, November 29, 2011
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Blood Pressure Drug May Boost Effectiveness of Lung Cancer Treatment
Researchers at Imperial College London have suggested that the blood pressure drug may make a type of lung cancer treatment more effective.
Insight into Eye Diseases
Scientists recreate zebrafish cell regeneration from retinal stem cells in mice.
New Discovery May Benefit Farmers Worldwide
Scientists have shown how a crop-microbe 'team' protect against fungal infection.
Antibodies Paving the Way to HIV Vaccine
Researchers uncover factors responsible for the formation of broadly neutralizing HIV antibodies in humans.
Designing Drugs with a Whole New Toolbox
Researchers develop methods to design small, targeted proteins with shapes not found in nature.
Protein Studies Discover Molecular Secrets
Two protein studies have mapped proteins that reveal the secrets to recycling carbon and healing cells.
Tapping Evolution to Improve Biotech Products
Researchers show how 'ancestral sequence reconstruction' can be used to guide engineering of a blood clotting protein.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!