Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

RNA Shown to Silence Cancer Suppressor Gene

Published: Tuesday, January 15, 2008
Last Updated: Tuesday, January 15, 2008
Bookmark and Share
Discovery sheds light on epigenetic mechanisms in tumor development in plants and animals.

One way cancer arises is when tumor suppressor genes that normally keep cell growth in check are mysteriously turned off. Now, researchers at Johns Hopkins have discovered that at least one tumor suppressor gene is in fact turned off by a “noncoding” single stranded RNA nucleic acid similar to its double-stranded DNA cousin.

The so-called antisense RNA is made by a gene on a neighboring strand of DNA. Most genes in the human genome have associated with them nearby antisense RNAs, which, as their name implies, are complementary to the amino acid sequences in a “sense” RNA to which they may bind and switch off.

Reporting on the discovery in the Jan. 10 issue of Nature, the Johns Hopkins team says an absolute key to fighting cancer is to figure out why and how tumor suppressor genes get silenced and identifying means of switching them back on chemically.

“This is the first time we’ve seen an antisense RNA silencing a tumor suppressor through the means of epigenetic changes,” says Hengmi Cui, Ph.D., assistant professor of molecular medicine at Hopkins.  Epigenetic changes refer to heritable changes in genetic material that are not changes in the sequence of the DNA; these could include the addition of chemical tags onto DNA or otherwise altering how compressed the DNA is in a cell.

The Johns Hopkins team notes that a similar phenomenon occurs in plants but until now has not been seen in any type of animal, including humans. “We’re really excited to see if this is a general mechanism for all tumor suppressor genes,” says Cui.

Andrew Feinberg, M.D., M.P.H., professor of medicine, oncology and molecular biology and genetics and director of the Epigenetics Center at Hopkins, says the results of the team’s experiments “bring us closer to solving two outstanding mysteries in biology, namely what all those noncoding RNAs do in cells and how tumor suppressor genes get turned off.” It turns out, he adds “that many of those noncoding RNAs may be silencing tumor suppressor genes.”

Following clues that suggested such a role for antisense RNA, the researchers first surveyed computer databases for tumor suppressor genes with known neighboring antisense RNAs. They found antisense counterparts to 21 well-known tumor suppressor genes and decided to further study one of them, p15. That gene is deleted or silenced in several types of human cancer, including melanomas, gliomas, lung and bladder carcinomas and up to 60 percent of leukemias.

The research team first analyzed leukemia cells for the presence of antisense p15. Of 16 patient samples, 11 showed an increase in antisense p15 and decreased p15. The researchers confirmed in other experiments that the more antisense p15 a cell contained the less sense p15 it was likely to have, strong evidence that the antisense was somehow turning down the normal, sense version.

Chemically turning on the antisense gene, the team found, turned off the sense p15 gene. When they looked at the DNA around the p15 gene in cells, they found that the DNA was more compact and tightly packaged, which generally shuts off genes.

“Somehow, the presence of the antisense RNA leads to the formation of this tightening of the chromosome to make heterochromatin around the p15 gene, turning it off,” says Feinberg. “We’re now looking at other tumor suppressor genes to figure out how this happens and how general this phenomenon is.”

Further characterization of the antisense RNAs, according to Feinberg, could lead to their use as markers for certain types of cancer as well as targets for cancer-specific drugs and therapies.

“This initial laboratory study gives us some excellent clues of how to proceed with possible clinical studies to determine whether antisense RNAs could be used to guide therapy,” says David Gius, M.D., Ph.D., of the National Cancer Institute’s Radiation Oncology branch.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Hope for Zika Treatment Found in Large-Scale Screen of Existing Drugs
Johns Hopkins researchers join collaborative group to screen 6,000 existing drugs in hopes of finding treatments for Zika Virus infection
Tuesday, August 30, 2016
Cancer Cells Migrate Towards Oxygen
Bioengineers report results showing sarcoma cells in mice finding pathways toward higher concentrations of oxygen
Thursday, August 04, 2016
Protein Reinforces Growth of Damaged Muscles
Biologists have found a protein involved in stem cells that bolsters damaged muscle tissue growth - potential for muscle degeneration treatments.
Wednesday, July 20, 2016
‘Mini-Brains’ to Study Zika
Novel tool expected to speed research on brain and drug development.
Wednesday, April 27, 2016
Hepatitis C Virus Testing Guidelines Miss Too Many Cases
Urban emergency departments a good place to enact universal screening for adults.
Friday, April 15, 2016
How Cancer Stem Cells Thrive When Oxygen Is Scarce
Scientists from The John Hopkins University show cancer stem cells thrive in low oxygen environments using similar mechanisms to embryonic stem cells.
Wednesday, March 30, 2016
Tiny Lab Devices Could Attack Huge Problem of Drug-Resistant Infections
NIH-funded project aims for fast identification and destruction of deadly bacteria.
Monday, April 27, 2015
Triple-Negative Breast Cancer Immune Therapy
Experimental immune therapy tested in preliminary study of women with triple-negative breast cancer.
Tuesday, April 21, 2015
A New Tool for Understanding ALS: Patients’ Brain Cells
Researchers create a free public library of versatile stem cells from ALS patients.
Thursday, April 16, 2015
Tumor-Only Genetic Sequencing May Misguide Cancer Treatment in Nearly Half of All Patients
Johns Hopkins scientists say the genetic code of tumors must be compared to patients’ noncancer genome to get a true picture.
Thursday, April 16, 2015
New Cancer-Fighting Strategy Would Harden Cells to Prevent Metastasis
Potential drug for pancreatic cancer now being tested in animals.
Thursday, January 22, 2015
Training the Immune System to Destroy Cure-Defying Mutant HIV
This study reveals the reason behind the failure of luring HIV out of hiding, and charts a therapeutic strategy to eradicate mutant HIV-infected cells.
Thursday, January 08, 2015
New Genetic and Epigenetic Contributors to Diabetes Identified
Comparison of fat cells in mice and men hints at how genes and environment conspire to produce disease.
Wednesday, January 07, 2015
When DNA Gets Sent to Time-Out
New details revealed in the coordinated regulation of large stretches of DNA.
Tuesday, January 06, 2015
CRISPR Shows Promise in Engineering Human Stem Cells
Johns Hopkins study could advance use of stem cells for treatment and disease research.
Monday, January 05, 2015
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Gene Regulation in Brain May Explain Repetitive Behaviors in Rett Syndrome Patients
The research could be a key step in developing treatments to eliminate symptoms that drastically impair the quality of life in Rett patients.
Heart Arrhythmia Caused by Mosaic of Mutant Cells
Researchers have solved the genetic mystery of an infant suffering from heart arrhythmia.
Iron Nanoparticles Make Immune Cells Attack Cancer
Researchers accidentally discover that nanoparticles invented for anemia treatment can trigger the immune system’s ability to destroy tumor cells.
Crispr Toolbox Expanded By Protein
Researchers have shown a newly discovered CRISPR protein has two distinct RNA cutting activities.
CES Score May Predict Response to Cancer Treatment
Researchers identify new type of biomarker that helps predict prognosis and response to several types of cancer treatment.
Uncovering Cancer’s ‘Invisibility Cloak’
Researchers discover cancer cell mechanism to become invisible to the body's immune system.
Genetic Impact of Endurance Training
Research has found that endurance training changes genetic activity in thousands of genes, giving rise to large number of altered RNA variants.
Treating Sepsis with Marine Mitochondria
Mitochondrial alternative oxidase from a marine animal combats bacterial sepsis.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!