Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

RNA Shown to Silence Cancer Suppressor Gene

Published: Tuesday, January 15, 2008
Last Updated: Tuesday, January 15, 2008
Bookmark and Share
Discovery sheds light on epigenetic mechanisms in tumor development in plants and animals.

One way cancer arises is when tumor suppressor genes that normally keep cell growth in check are mysteriously turned off. Now, researchers at Johns Hopkins have discovered that at least one tumor suppressor gene is in fact turned off by a “noncoding” single stranded RNA nucleic acid similar to its double-stranded DNA cousin.

The so-called antisense RNA is made by a gene on a neighboring strand of DNA. Most genes in the human genome have associated with them nearby antisense RNAs, which, as their name implies, are complementary to the amino acid sequences in a “sense” RNA to which they may bind and switch off.

Reporting on the discovery in the Jan. 10 issue of Nature, the Johns Hopkins team says an absolute key to fighting cancer is to figure out why and how tumor suppressor genes get silenced and identifying means of switching them back on chemically.

“This is the first time we’ve seen an antisense RNA silencing a tumor suppressor through the means of epigenetic changes,” says Hengmi Cui, Ph.D., assistant professor of molecular medicine at Hopkins.  Epigenetic changes refer to heritable changes in genetic material that are not changes in the sequence of the DNA; these could include the addition of chemical tags onto DNA or otherwise altering how compressed the DNA is in a cell.

The Johns Hopkins team notes that a similar phenomenon occurs in plants but until now has not been seen in any type of animal, including humans. “We’re really excited to see if this is a general mechanism for all tumor suppressor genes,” says Cui.

Andrew Feinberg, M.D., M.P.H., professor of medicine, oncology and molecular biology and genetics and director of the Epigenetics Center at Hopkins, says the results of the team’s experiments “bring us closer to solving two outstanding mysteries in biology, namely what all those noncoding RNAs do in cells and how tumor suppressor genes get turned off.” It turns out, he adds “that many of those noncoding RNAs may be silencing tumor suppressor genes.”

Following clues that suggested such a role for antisense RNA, the researchers first surveyed computer databases for tumor suppressor genes with known neighboring antisense RNAs. They found antisense counterparts to 21 well-known tumor suppressor genes and decided to further study one of them, p15. That gene is deleted or silenced in several types of human cancer, including melanomas, gliomas, lung and bladder carcinomas and up to 60 percent of leukemias.

The research team first analyzed leukemia cells for the presence of antisense p15. Of 16 patient samples, 11 showed an increase in antisense p15 and decreased p15. The researchers confirmed in other experiments that the more antisense p15 a cell contained the less sense p15 it was likely to have, strong evidence that the antisense was somehow turning down the normal, sense version.

Chemically turning on the antisense gene, the team found, turned off the sense p15 gene. When they looked at the DNA around the p15 gene in cells, they found that the DNA was more compact and tightly packaged, which generally shuts off genes.

“Somehow, the presence of the antisense RNA leads to the formation of this tightening of the chromosome to make heterochromatin around the p15 gene, turning it off,” says Feinberg. “We’re now looking at other tumor suppressor genes to figure out how this happens and how general this phenomenon is.”

Further characterization of the antisense RNAs, according to Feinberg, could lead to their use as markers for certain types of cancer as well as targets for cancer-specific drugs and therapies.

“This initial laboratory study gives us some excellent clues of how to proceed with possible clinical studies to determine whether antisense RNAs could be used to guide therapy,” says David Gius, M.D., Ph.D., of the National Cancer Institute’s Radiation Oncology branch.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tiny Lab Devices Could Attack Huge Problem of Drug-Resistant Infections
NIH-funded project aims for fast identification and destruction of deadly bacteria.
Monday, April 27, 2015
Triple-Negative Breast Cancer Immune Therapy
Experimental immune therapy tested in preliminary study of women with triple-negative breast cancer.
Tuesday, April 21, 2015
A New Tool for Understanding ALS: Patients’ Brain Cells
Researchers create a free public library of versatile stem cells from ALS patients.
Thursday, April 16, 2015
Tumor-Only Genetic Sequencing May Misguide Cancer Treatment in Nearly Half of All Patients
Johns Hopkins scientists say the genetic code of tumors must be compared to patients’ noncancer genome to get a true picture.
Thursday, April 16, 2015
New Cancer-Fighting Strategy Would Harden Cells to Prevent Metastasis
Potential drug for pancreatic cancer now being tested in animals.
Thursday, January 22, 2015
Training the Immune System to Destroy Cure-Defying Mutant HIV
This study reveals the reason behind the failure of luring HIV out of hiding, and charts a therapeutic strategy to eradicate mutant HIV-infected cells.
Thursday, January 08, 2015
New Genetic and Epigenetic Contributors to Diabetes Identified
Comparison of fat cells in mice and men hints at how genes and environment conspire to produce disease.
Wednesday, January 07, 2015
When DNA Gets Sent to Time-Out
New details revealed in the coordinated regulation of large stretches of DNA.
Tuesday, January 06, 2015
CRISPR Shows Promise in Engineering Human Stem Cells
Johns Hopkins study could advance use of stem cells for treatment and disease research.
Monday, January 05, 2015
Multiple Allergic Reactions Traced To Single Protein
Points to new strategy to reduce allergic responses to many medications.
Thursday, December 18, 2014
Brain Inflammation A Hallmark Of Autism
Johns Hopkins study is largest so far of gene expression in autism brains.
Thursday, December 11, 2014
Up-close Look at Cancer on the Move
Microscopic view of metastasis could give insight about how to keep cancer in check.
Friday, November 07, 2014
Newborns Exposed to Allergens May Have Lower Allergy and Asthma Risk
Newborns exposed to household germs, pet and rodent dander and roach allergens during their first year of life appear to have lower risk of developing asthma and allergies.
Tuesday, June 10, 2014
Experimental Vaccine Shows Promise against TB Meningitis
Study in animals lays groundwork for new prevention strategies in brain TB.
Tuesday, June 18, 2013
Seeing Through HIV's Disguises
Researchers identify 25 human proteins that may be crucial for HIV-1 infection and survival.
Friday, March 01, 2013
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos