Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Chemical Toolkit Manipulates Mitochondria, Reveals Insights into Drug Toxicity

Published: Tuesday, February 26, 2008
Last Updated: Wednesday, February 27, 2008
Bookmark and Share
A research team led by a Harvard Medical School assistant professor has developed a toolkit that isolates five primary aspects of mitochondrial function.

Why do nearly 1 million people taking cholesterol-lowering statins often experience muscle cramps? Why is it that in the rare case when a diabetic takes medication for intestinal worms, his glucose levels improve? Is there any scientific basis for the purported health effects of green tea?

A new chemical toolkit provides the first clinical explanation for these and other physiological mysteries. The answers, it turns out, all boil down to mitochondria, those tiny organelles floating around in cellular cytoplasm, often described as the cell’s battery packs.

A research team led by Harvard Medical School assistant professor and Broad Institute associate member Vamsi Mootha has developed a toolkit that isolates five primary aspects of mitochondrial function and analyzes how individual drugs affect each of these areas. These results are published online February 24 in Nature Biotechnology.

Over the last few decades, mitochondria have increasingly been understood as a key determinant of cellular health. On the other hand, mitochondrial dysfunction can lead to many neurodegenerative conditions as well as metabolic diseases such as diabetes.

Since mitochondria are responsible for turning the food we eat into the energy that drives our bodies, these and other connections are logical. Nevertheless, there has not yet been a systematic method for thoroughly interrogating all facets of mitochondrial activity.

“Historically, most studies on mitochondria were done by isolating them from their normal environment,” says Mootha, who is also a member of the Center for Human Genetic Research at Massachusetts General Hospital. “We wanted to analyze mitochondria in the context of intact cells, which would then give us a picture of how mitochondria relate to their natural surroundings. To do this we created a screening compendium that could then be mined with computation.”

In order to thoroughly analyze these organelles, Mootha and his team zeroed in on five basic features of mitochondria activity, looking at how a library of 2,500 chemical compounds affected mitochondrial toxic byproducts (like all “chemical factories” mitochondria produce their own toxic waste), energy levels, speed with which substances pass through these organelles, membrane voltage, and expression of key mitochondrial and nuclear genes. (Mitochondria contain their own genome, consisting of approximately 37 genes in humans.)

“It’s just like taking your car in for an engine diagnostic,” explains Mootha. “The mechanic will probe the battery, the exhaust system, the fan belt, etc., and as a result will then produce a read-out for the entire system. That’s analogous to what we’ve done.”

As a result of these investigations, Mootha and his group produced three major findings.

First, the team discovered a pathway by which the mitochondria and the cell’s nuclear genome communicate with each other. They found this by discovering that certain drugs actually broke communication between these two genomes. By reverse engineering the drugs’ toxic effects, they may be able to reconstruct normal function.

Second, the team looked at a class of the cholesterol-lowering drugs called statins. Roughly 100 million Americans take statins, and among that group, about 1 million experience muscle cramping and aches. Previous studies suggested that mitochondria were involved, but clinical evidence remained conflicting. Mootha and his colleagues found that three out of the six statins (Fluvastatin, Lovastatin, and Simvastatin) interfered with mitochondria energy levels, as did the blood-pressure drug Propranolol. When combined, the effect was worse.

“It’s likely that a fair number of patients with heart disease are on one of these three statins as well as Propranolol,” says Mootha, “Our cellular studies predict that these patients might be at a higher risk for developing the muscle cramps. Obviously, this is only a hypothesis, but now this is easily testable.”

The third and arguably most clinically relevant finding builds on a paper Mootha coauthored in 2003, a paper that demonstrated how type 2 diabetes was linked to a decrease in the expression of mitochondrial genes.

A subsequent and unrelated paper showed a relationship between type 2 diabetes and an increase in mitochondrial toxic byproducts. Mootha’s group decided to query their toolkit and see if there were any drugs that affected both of these functions, drugs that could boost gene expression while reducing mitochondrial waste.

Indeed, they found six compounds that did just that, five of which were known to perturb the cell’s cytoskeleton, that is, the scaffolding that gives a cell its structure.

Of the five drugs that did this, one, called Deoxysappanone, is found in green tea and is known to have anti-diabetic effects. Another, called Mebendazole, is used for treating intestinal worm infections. This connection gives a rationale to case reports in which diabetics treated with Mebendazole have described improvements in their glucose levels while on the drug.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cancer's Taste for Fat
Researchers discovered signalling pathway for fat burning is disrupted in certain cancers.
Friday, September 16, 2016
Keeping Up with HIV Mutations
Team develops technology to increase the speed of HIV development in mice to model and quickly test vaccination strategies.
Friday, September 09, 2016
Enzyme that Triggers Cell Demise in ALS Identified
Scientists from Harvard have identified a key instigator of nerve cell damage in people with amyotrophic lateral sclerosis (ALS).
Thursday, August 25, 2016
Misdiagnosis in HCM Tests
Genetic tests for potentially fatal heart anomaly can misdiagnose condition in black Americans.
Thursday, August 18, 2016
Uncovering Constructor Proteins
Scientists have discovered a new bacterial cell wall builder that could be a target for antibiotic development.
Wednesday, August 17, 2016
Discovering the First Farmers
Genetic analyses reveal a collection of highly distinct groups in the Near East and Europe at the dawn of agriculture.
Thursday, July 28, 2016
Doubling Down on Dengue
HMS researchers have discovered two ways a compound blocks dengue virus.
Tuesday, April 26, 2016
Fighting Early Stage Alzheimer's
Mouse study suggests possibility of curbing early synapse loss in Alzheimer’s.
Monday, April 04, 2016
Breaking the Chain
Compound prevents multidrug-resistant fungi from pumping out drugs.
Tuesday, February 23, 2016
Breaking Point
Hotspots for DNA breaks cluster in specific genes in developing neurons.
Wednesday, February 17, 2016
The Spice of Life
Scientists discover important genetic source of human diversity.
Tuesday, February 09, 2016
Cytoskeleton Crew
Findings confirm sugar's role in helping cancers survive by changing cellular architecture.
Tuesday, February 09, 2016
The Power of Three
Overlooked portion of cell “death receptor” critical in some cancers, autoimmune diseases.
Tuesday, February 09, 2016
‘Lifespan Machine’ Probes Cause of Aging
Findings suggest that aging has no single mechanism.
Wednesday, February 03, 2016
Photo Finish
Nanoparticles pair photodynamic and molecular therapies against pancreatic cancer in mice.
Tuesday, January 26, 2016
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
A Diversity of Genomes
New DNA from understudied groups reveals modern genetic variation, ancient population shifts.
“Sixth Sense” May Be More Than Just A Feeling
The NIH Study shows that two young patients with a mutation in the PIEZ02 have problems with touch and proprioception, or body awareness.
Gene Could Reduce Female Mosquitoes
Virginia Tech researchers have found a gene that can reduce female mosquitoes over many generations.
Biomolecular Manufacturing ‘On-the-Go’
Wyss Institute team unveils a low-cost, portable method to manufacture biomolecules for a wide range of vaccines, other therapies as well as diagnostics.
Improving Crop Efficiency with CRISPR
New study of CRISPR-Cas9 technology from Virginia Tech shows potential to improve crop efficiency.
Fighting Cancer with Sticky Nanoparticles
Treatment that uses bioadhesive nanoparticles drug carriers proved more effective than conventional treatments for certain cancers.
Stem Cell ‘Heart Patch’ Almost Perfected
Scientists aiming to perfect and test 3D "heart patches" in animal model, last hurdle before human patients.
Fighting Plant Pathogens with RNA
Researchers develop strategy that could lead to environmentally friendly fungicide to fight pathogens.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!