Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

UNC-CH Scientists Turn Human Skin Cells Into Insulin-Producing Cells

Published: Tuesday, September 23, 2008
Last Updated: Tuesday, September 23, 2008
Bookmark and Share
Researchers have transformed cells from human skin into cells that produce insulin, the hormone used to treat diabetes.

Researchers at the University of North Carolina at Chapel Hill School of Medicine have transformed cells from human skin into cells that produce insulin, the hormone used to treat diabetes.

The breakthrough may one day lead to new treatments or even a cure for the millions of people affected by the disease, researchers say.

The approach involves reprogramming skin cells into pluripotent stem cells, or cells that can give rise to any other fetal or adult cell type, and then inducing them to differentiate, or transform, into cells that perform a particular function – in this case, secreting insulin.

Several recent studies have shown that cells can be returned to pluripotent state using “defined factors” (specific proteins that control which genes are active in a cell), a technique pioneered by Dr. Shinya Yamanaka, a professor at Kyoto University in Japan.

However, the UNC study is the first to demonstrate that cells reprogrammed in this way can be coaxed to differentiate into insulin-secreting cells. Results of the study are published online in the Journal of Biological Chemistry.

“Not only have we shown that we can reprogram skin cells, but we have also demonstrated that these reprogrammed cells can be differentiated into insulin-producing cells which hold great therapeutic potential for diabetes,” said study lead author Yi Zhang, Ph.D., Howard Hughes Medical Institute investigator, professor of biochemistry and biophysics at UNC and member of the Lineberger Comprehensive Cancer Center.

“Of course, there are many years of additional studies that are required first, but this study provides hope for a cure for all patients with diabetes,” said John Buse, M.D., Ph.D., president of the American Diabetes Association and professor and chief of the endocrinology division in the UNC School of Medicine’s department of medicine.

About 24 million Americans suffer from diabetes, a disease that occurs when the body is unable to produce or use insulin properly. Virtually all patients with type I diabetes, the more severe of the two types, must rely on daily injections of insulin to maintain their blood sugar levels.

Recent research exploring a possible long-term treatment – the transplantation of insulin-producing beta cells into patients – has yielded promising results. But this approach faces its own challenges, given the extreme shortage of matched organ donors and the need to suppress patients’ immune systems.

The work by Zhang and other researchers could potentially address those problems, since insulin-producing cells could be made from diabetic patients’ own reprogrammed cells.

Zhang is collaborating with Buse to obtain skin samples from diabetes patients. He said he hoped his current experiments will take this approach one step closer to a new treatment or even a cure for diabetes.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Create Painless Patch of Insulin-Producing Beta Cells to Control Diabetes
Researchers at UNC and NC State have developed the new “smart cell patch” to treat millions of people with type-1 and advanced type-2 diabetes.
Saturday, March 19, 2016
Device Hits Pancreatic Tumors Hard With Toxic Four-Drug Cocktail, Sparing The Body
Researchers at UNC have revealed that an implantable device can deliver a particularly toxic cocktail of drugs directly to pancreatic tumors to stunt their growth and shrink them.
Saturday, February 27, 2016
Stem Cells Turned into Cancer Killers
Skin cells turned cancer-killing stem cells hunt down and destroy the deadly remnants inevitably left behind when a brain tumor is surgically removed.
Friday, February 26, 2016
Stem Cells Turned into Cancer Killers
Skin cells turned cancer-killing stem cells hunt down and destroy the deadly remnants inevitably left behind when a brain tumor is surgically removed.
Friday, February 26, 2016
Potential Brain Cancer Drug Target
UNC Lineberger researchers have reporedt that when they removed Dicer from preclinical models of medulloblastoma, a common type of brain cancer in children, they found high levels of DNA damage in the cancer cells, leading to the cells’ death.
Friday, January 08, 2016
New Path for ALS Drug Discovery
For the first time, scientists pin down the structure of toxic clumps of a protein associated with a large number of ALS cases, opening new avenues in the pursuit of drugs to stem the disease.
Thursday, January 07, 2016
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Monday, November 16, 2015
Autism Mutation Isolated – Could Be Treated with Specific Enzyme
The research shows the precise cellular mechanisms that could increase risk for the disorder and how an existing drug might help thousands of people with autism.
Monday, August 10, 2015
Researchers Find Two Biomarkers Linked to Severe Heart Disease
Study suggests that elevated oxidized LDL cholesterol and fructosamine – a measure of glycated proteins in blood sugar – are signposts for the development of severe coronary disease, especially in females.
Thursday, July 09, 2015
A Single-Cell Breakthrough
UNC School of Medicine scientist Scott Magness and collaborators use their newly developed technology to dissect properties of single stem cells. The advancement will allow researchers to study gastrointestinal disorders and cancers like never before.
Thursday, March 19, 2015
New Gene Therapy For Hemophilia Shows Potential As Safe Treatment
Research showed that bleeding events were drastically decreased in animals with hemophilia B. Using a viral vector to swap out faulty genes proved safe and could be used for the more common hemophilia A.
Tuesday, March 17, 2015
Genetically Speaking, Mammals Are More Like Their Fathers
A first of its kind study shows that who we inherit genetic variants from – our mother or father – is crucial for the development of diseases and for research studies aimed at finding causes and potential treatments.
Wednesday, March 04, 2015
Key Protein That Allows Plavix To Conquer Platelets Found
The findings could lead to more personalized approaches to controlling platelet activity during heart attacks and other vascular emergencies and diseases.
Wednesday, February 25, 2015
Researchers Silence Leading Cancer-Causing Gene
A novel siRNA-based molecule successfully targets KRAS, a well-studied but hard to halt protein important for cancer development and metastasis.
Monday, November 17, 2014
Blood Test May Help Determine Psychosis Risk
A study led by University of North Carolina at Chapel Hill researchers represents an important step forward in the accurate diagnosis of people who are experiencing the earliest stages of psychosis.
Tuesday, September 23, 2014
Scientific News
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Apricot Kernels Pose Risk of Cyanide Poisoning
Eating more than three small raw apricot kernels, or less than half of one large kernel, in a serving can exceed safe levels. Toddlers consuming even one small apricot kernel risk being over the safe level.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
A lncRNA Regulates Repair of DNA Breaks in Breast Cancer Cells
Findings give "new insight" into biology of tough-to-treat breast cancer.
COPD Linked to Increased Bacterial Invasion
Persistent inflammation in COPD may result from a defect in the immune system that allows airway bacteria to invade deeper into the lung.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!