Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Singapore Scientists’ made Significant Discovery for Stem Cell Technology and Clinical Research

Published: Tuesday, September 23, 2008
Last Updated: Tuesday, September 23, 2008
Bookmark and Share
Scientists reveal important insights into how researchers can manipulate and engineer different stem cells for the treatment of human degenerative disorders.

Singapore scientists have recently made a significant discovery in understanding the behavior of a class of gene regulators, known as transcriptional factors, paving the way for important advancements in stem cell technology and clinical research. They revealed that the same transcription factor, which is crucial for the survival of different stem cell types, can behave differently.

This finding, published in Cell Stem Cell on September 18, 2008, reveals important insights into how researchers can manipulate and engineer different stem cells for the treatment of human degenerative disorders.

Stem cells are important for the cell-based therapy of many degenerative tissue disorders. Each type of body tissue has its own unique type of stem cells whose behavior is controlled by different sets of genes.

Given the enormous complexity of each stem cell type and the underlying genetic bases for their unique purpose, it has been a major challenge for scientists to unravel the similarities and differences between the different stem cells.

The latest research, led by Senior Group Leader, Dr Bing Lim of the Genome Institute of Singapore (GIS), focused on identifying and understanding the functions of powerful genetic molecules, also known as ‘stem cell factors’. This study clearly showed for the first time that different types of stem cells are defined by exclusive combinations of genes working together, and this is under the influence of a single key stem cell factor (in this case called Sall4).

Dr Bing Lim said, “This new discovery has provided us with important new leads and ideas on how to grow and expand various stem cells for clinical research and treatment needs”. The finding is timely as other researchers have recently revealed that specific genetic recipes can be used to turn non-stem cells into different stem cells, which can be useful clinically.

Dr Daniel Tenen, Professor of Medicine at Harvard Medical School, and also the Director for Cancer Research Centre of Excellence at the National University of Singapore said, “These studies are of great significance, as they provide important clues as to how a single transcription factor might regulate different targets in different stem cells.”

Interestingly, this stem cell factor also appeared to be associated with certain diseases, particularly blood cancer or leukemia. Dr Li Chai, Instructor at the Department of Pathology at the Harvard Medical School further pointed out that, “as Sall4 plays an important role in both normal hematopoietic stem cell function and in leukemia stem cells, these findings may have clinical relevance; they may lead to understanding differences between normal and cancer stem cells.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Engineer Human Stem Cells and Move Closer to Mastering Regenerative Medicine
Researchers have successfully converted human embryonic stem cells (hESCs) cultured in the laboratory to a state that is closer to the cells found in the human blastocyst.
Wednesday, December 11, 2013
Genome Institute of Singapore and Fluidigm Establish Asia's First Single-Cell Genomics Research Center
Center exclusively dedicated to accelerating the understanding of how individual cells work, and how diagnosis and treatment might be enhanced through insight derived from single cells.
Monday, December 17, 2012
Singapore Scientists Lead in 3D Mapping of Human Genome to Help Understand Human Diseases
This discovery is crucial in understanding how human genes work together, and will re-write textbooks on how transcription regulation and coordination takes place in human cells.
Thursday, February 02, 2012
Scientists’ Genetic Mapping of Han Chinese Provides Invaluable Information of Ethnic Chinese Ancestry
Findings provides invaluable information to determine the design and interpretation of genetic studies of human diseases.
Monday, December 07, 2009
Genome Institute of Singapore and Roche NimbleGen: Tracking the Evolutionary Path of the H1N1 Influenza A
Researchers develop a generic PCR approach to amplify full genome of influenza A virus; followed by NimbleGen microarray-based hybridization sequencing.
Friday, May 29, 2009
Scientists Found a Way to Enhance Development of Human Embryonic Stem Cells Therapies
Scientists at the Genome Institute of Singapore and the National University of Singapore have found a way of manipulating ESCs that allows stem cells to be produced for use in clinical treatments.
Tuesday, January 23, 2007
Scientific News
Platelets are the Pathfinders for Leukocyte Extravasation During Inflammation
Findings from the study could help in the prevention and treatment of inflammatory pathologies.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Dengue Virus Exposure May Amplify Zika Infection
Researchers at Imperial College London have found that the previous exposure to the dengue virus may increase the potency of Zika infection.
Gender Determination in Forensic Investigations
This study investigated the effectiveness of lip print analysis as a tool in gender determination.
Identifying Novel Types of Forensic Markers in Degraded DNA
Scientists have tried to verify the nucleosome protection hypothesis by discovering STRs within nucleosome core regions, using whole genome sequencing.
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Starving Stem Cells May Enable Scientists To Build Better Blood Vessels
Researchers from the University of Illinois at Chicago College of Medicine have uncovered how changes in metabolism of human embryonic stem cells help coax them to mature into specific cell types — and may improve their function in engineered organs or tissues.
Rates of Nonmedical Prescription Opioid Use Disorder Double in 10 Years
Researchers at NIH have found that the nonmedical use of prescription opioids has more than doubled among adults in the United States from 2001-2002 to 2012-2013.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!