Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

High Throughput Imaging Speeds Analysis of Hormone Receptors

Published: Monday, November 03, 2008
Last Updated: Monday, November 03, 2008
Bookmark and Share
A new high throughput microscopy technique enabled researchers at Baylor College of Medicine to analyze thousands of individual cells expressing androgen receptor.

A new high throughput microscopy technique enabled researchers at Baylor College of Medicine in Houston to analyze thousands of individual cells expressing androgen receptor, a finding that could herald new ways of evaluating the effect of drugs or other treatments on cells with normal or aberrant hormone receptors.

In a report in the current issue of Public Library of Science One (PLoS One), Dr. Michael Mancini and his collaborators reported a new, next generation high throughput image-based assay that helps determine the level and location of androgen receptor and its transcriptional activity on a cell-by-cell basis.

"This has application to personalized medicine," said Mancini, associate professor of molecular and cellular biology at BCM and director of its Integrated Microscopy Core. "For example, we could use the high throughput microscope and robust image analysis to determine which drug might be best to turn off or repair a mutated cell that is causing disease."

In this case, he and his colleagues analyzed the androgen receptor, a molecule that binds the hormones testosterone or dihydrotestosterone and is responsible for regulating genes that give an organism or animal male characteristics.

"As our ability to image cells using high throughput microscopy got going faster and faster, we began to collect enormous amounts of functional data that was usually only accessible by separate (and slow) biochemical experiments. Our customized software approaches then allowed us two assemble the results into a more systems-level appreciation of the biology, linking together several functional characteristics of the androgen receptor," he said.

The high throughput technique, often called high content analysis, enables researchers to analyze effects on a cell-by-cell basis, taking into account the heterogeneity of the cells, he said. Before the development of new microscopes, he said, taking a few images an hour was a feat.

"Now we routinely take thousands of pictures a day," said Mancini.

Not only that, but scientists such as Adam Szafran, the M.D./Ph.D. student who is first author of this report, can essentially look at several elements of cellular response at the same time.

"We can study issues dealing with the cell cycle as it goes through its life," said Szafran. Previously, scientists had to manipulate cells to capture them at different points in their lives. The new imaging technology enables them to study the cell in a more natural form.

In the PLoS study, Szafran, Mancini and their colleagues were able to study the response of a particular androgen mutation to different ligands.

"We could show how the receptor was defective in respect to the endogenous (or normally present) ligand. When we used a different ligand, we could rescue aspects of the receptor's function," said Szafran.

The technique could have application in personalizing medicine, said Mancini. Physicians could take the individual cells of a patient diagnosed with a disease and use the high throughput microscope to see how different drugs affect the mutated cells. The high speed approaches for androgen receptor studies are also being used to investigate basic science and personalized medicine possibilities in several other projects, including breast and prostate cancers, and adipose biology.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Synthetic Protein Captures DNA Events Leading to Cancer
A team of scientists have developed new technology allowing them to identify molecular intermediates that can drive genetic change.
Tuesday, November 22, 2016
Antibodies Block Norovirus’ Entrance into Cells
Scientists have uncovered a mechanism in the human body that targets and successfully blocks noroviruses.
Tuesday, September 20, 2016
Growing Noroviruses in the Lab
Human noroviruses – the leading viral cause of acute diarrhea around the world – have been difficult to study because scientists had not found a way to grow them in the lab.
Tuesday, August 30, 2016
Neurodvelopmental Disorder Cause Linked to SON Gene
A genetic link has been discovered for a previously unxplained neurodevelopmental disorder.
Tuesday, August 23, 2016
Myeloid-Derived Suppressor Cells Play Role in Tumor Growth
Researchers at Baylor College of Medicine have reported a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.
Friday, May 20, 2016
Largest Genomic Study on Kidney Cancer
Understanding the complexity of cancer is a major goal of the scientific community, and for kidney cancer researchers this goal just got closer.
Wednesday, March 16, 2016
Largest Genomic Study on Kidney Cancer Brings Hope for More Effective Treatments
Researchers at Baylor College of Medicine have found that a pathway called immune checkpoint was most active in a subtype of clear cell kidney cancer that is typically very aggressive.
Tuesday, March 08, 2016
Baylor, DNAnexus Collaborate
Partnership sets out to develop HgV, a new iteration of HGSC's Mercury, a BCM-developed data processing and variant calling pipeline for analyzing and annotating next-generation sequencing data in research and clinical contexts.
Tuesday, June 23, 2015
Baylor, TGen Collaborate on Personalized Cancer Treatment Options
The companies will collaborate on precision medicine for cancer patients by offering liquid biopsies, performing gene sequencing, conducting clinical trials, and creating personalized vaccines.
Tuesday, May 26, 2015
Role of Cancer Stem Cells in Chemo-Resistance
'Wound response' of cancer stem cells may explain chemo-resistance in bladder cancer.
Friday, December 05, 2014
Massimo Pietropaolo Named McNair Scholar at Baylor
World renowned physician-scientist in type 1 diabetes research, Dr. Massimo Pietropaolo, has been named McNair Scholar at Baylor College of Medicine.
Wednesday, October 29, 2014
Clinical Integration of NGS
Experts provide much-needed policy analysis for clinical integration of next generation sequencing.
Tuesday, September 23, 2014
Collaboration Unravels Novel Mechanism for Neurological Disorder
The novel gene (CLP1) associated with a neurological disorder affecting both the peripheral and central nervous systems.
Saturday, April 26, 2014
$3M NIH Grant Enables Baylor International HIV/AIDS Program
Researchers to study genetic differences of disease in sub-Saharan African children.
Wednesday, February 19, 2014
Baylor College of Medicine, Berry Genomics Co. Seek to Improve on Prenatal Genetic Tests
Teams aim to improve prenatal genetic testing by combining BCM’s expertise in using microarrays for DNA analysis and Berry’s non-invasive technology evaluating fetal DNA in maternal plasma.
Monday, January 07, 2013
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!