Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Protein 'Tubules' Free Avian Flu Virus from Immune Recognition

Published: Friday, November 07, 2008
Last Updated: Friday, November 07, 2008
Bookmark and Share
Two domains or portions of the protein NS1 combine to form tiny tubules where double-stranded RNA is hidden from the immune system, researchers say.

A protein found in the virulent avian influenza virus strain called H5N1 forms tiny tubules in which it "hides" the pieces of double-stranded RNA formed during viral infection, which otherwise would prompt an antiviral immune response from infected cells, said Baylor College of Medicine researchers in an online report in the journal Nature.

Two domains or portions of the protein NS1 combine to form tiny tubules where double-stranded RNA is hidden from the immune system, said Dr. B. V. Venkataram Prasad, professor of biochemistry and molecular biology, molecular virology and microbiology at BCM and his student, Dr. Zachary A. Bornholdt.

"Once we confirm the importance of this structural information, we should be able to design drugs to block this action," said Prasad. "There are other things the protein could do to interfere with different immune mechanisms. We don't know if this is the only mechanism or if there are others that also come into play during influenza virus infection."

The two researchers had already recognized the importance of the protein NS1 in the virulence of influenza viruses and particularly, H5N1, a form of avian flu associated with more than half the deaths in a 2004 "bird flu" outbreak that resulted in 50 human cases and 36 deaths in Vietnam, China and Thailand.

In all but one case, experts ruled out human-to-human spread of the virus. In a previous report, Prasad and Bornholdt described the structure of an area of the protein called the effector domain. In this report, a series of elegant experiments designed and carried out over eight months by Bornholdt allowed the two scientists to "crystallize" the entire protein.

By doing this, they were able to determine its structure using a technique called X-ray crystallography. This technique enables scientists to determine the three-dimensional structure of proteins and other bio-molecules by scattering X-rays through a crystal of the molecule. They substantiated their structure with cryo-electron microscopy, which makes images of tiny frozen structures using an extremely powerful electron microscope.

That structure revealed a previously unsuspected idiosyncrasy of NS1 in H5N1 that could explain the virus' virulence. In most cases, when an infected cell is exposed to a virus, double-stranded RNA molecules are formed triggering a potent anti-viral response that involves production of interferon.

However, the two domains of NS1 in this H5N1 interact to form tiny tubules. The double-stranded RNA is hidden or sequestered in these structures. The cell never sees a significant length of the RNA and does not marshal its immune forces to the fight the virus. Prasad and Bornholdt believe also that cellular factor binding sites found on the surface of the tubules also play a role in fooling the immune system.

"This is only one structure," said Prasad. "We need to see if this holds up with other NS1 structures from other influenza viruses."

Bornholdt's technique for crystallizing the protein will prove valuable in pursuing this work, said Prasad.

"Is this a common mechanism for eluding the immune system?" he said. He said hopes to build a library to NS1 structures to facilitate future studies designed to fight influenza worldwide.

While H5N1 is not usually transmitted from human-to-human at this point, a small change in its genetic structure – perhaps an exchange of genes with a more easily transmitted flu virus – could change that, he said. Developing drugs to fight the virus could prove life-saving in a pandemic.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Baylor, DNAnexus Collaborate
Partnership sets out to develop HgV, a new iteration of HGSC's Mercury, a BCM-developed data processing and variant calling pipeline for analyzing and annotating next-generation sequencing data in research and clinical contexts.
Tuesday, June 23, 2015
Baylor, TGen Collaborate on Personalized Cancer Treatment Options
The companies will collaborate on precision medicine for cancer patients by offering liquid biopsies, performing gene sequencing, conducting clinical trials, and creating personalized vaccines.
Tuesday, May 26, 2015
Role of Cancer Stem Cells in Chemo-Resistance
'Wound response' of cancer stem cells may explain chemo-resistance in bladder cancer.
Friday, December 05, 2014
Massimo Pietropaolo Named McNair Scholar at Baylor
World renowned physician-scientist in type 1 diabetes research, Dr. Massimo Pietropaolo, has been named McNair Scholar at Baylor College of Medicine.
Wednesday, October 29, 2014
Clinical Integration of NGS
Experts provide much-needed policy analysis for clinical integration of next generation sequencing.
Tuesday, September 23, 2014
Collaboration Unravels Novel Mechanism for Neurological Disorder
The novel gene (CLP1) associated with a neurological disorder affecting both the peripheral and central nervous systems.
Saturday, April 26, 2014
$3M NIH Grant Enables Baylor International HIV/AIDS Program
Researchers to study genetic differences of disease in sub-Saharan African children.
Wednesday, February 19, 2014
Baylor College of Medicine, Berry Genomics Co. Seek to Improve on Prenatal Genetic Tests
Teams aim to improve prenatal genetic testing by combining BCM’s expertise in using microarrays for DNA analysis and Berry’s non-invasive technology evaluating fetal DNA in maternal plasma.
Monday, January 07, 2013
Microarray Analysis Improves Prenatal Diagnosis
A "chip" or array that can quickly detect disorders such as Down syndrome, or other diseases associated with chromosomal abnormalities, has proved an effective tool in prenatal diagnosis in 300 cases, as reported by Baylor College of Medicine.
Tuesday, November 29, 2011
Experimental Drug Targets Chemo-Resistant Breast Cancer Stem Cells
The cells that remain after treatment that could potentially refuel tumor growth, researchers say.
Monday, December 14, 2009
High Throughput Imaging Speeds Analysis of Hormone Receptors
A new high throughput microscopy technique enabled researchers at Baylor College of Medicine to analyze thousands of individual cells expressing androgen receptor.
Monday, November 03, 2008
Lack of Fragile X, Related Gene Disrupts Sleep
Deficiency of the FMR1 gene and a similar gene called FXR2 could account for sleep problems associated with inherited mental impairment.
Friday, June 27, 2008
Ronin Provides Alternate Pathway to Pristine Embryonic Stem Cells
The protein Ronin maintains embryonic stem cells in their undifferentiated state and plays roles in genesis of embryos and their development, researchers say.
Friday, June 27, 2008
Nature Mixes, Matches Genes to Keep Nerve Cells Straight
BCM researchers report that nature has to mix and match thousands of genes to generate the myriad types of neurons needed to assemble the brain and nervous system.
Thursday, June 12, 2008
Findings Indicate How Gene Transcription is Controlled in Embryonic Stem Cells
In a report that appears in the journal Nature Cell Biology, BCM researchers explain that association determines fate in embryonic stem cells.
Monday, May 05, 2008
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Best Test to Diagnose Strangles in Horses Identified
New research by Dr. Ashley Boyle of New Bolton Center’s Equine Field Service team shows that the best method for diagnosing Strangles in horses is to take samples from a horse’s guttural pouch and analyze them using a loop-mediated amplification (LAMP) polymerase chain reaction (PCR) test.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
Lucentis Effective for Proliferative Diabetic Retinopathy
NIH-funded clinical trial marks first major advance in therapy in 40 years.
Antibiotics on Our Plates 'Could Lead to Health Catastrophe'
Two medical experts from The University of Queensland are urging China to curb its use of antibiotics in animals to avoid what could be a ‘major health catastrophe’ for humans.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos