Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Matrix Protein Key to Fighting Viruses

Published: Thursday, April 30, 2009
Last Updated: Thursday, April 30, 2009
Bookmark and Share
Durham University researchers are developing methods that show how proteins interact with cell membranes when a virus strikes.

Researchers from Durham University's Centre for Bioactive Chemistry are developing methods that show how proteins interact with cell membranes when a virus strikes. Using their approach, the team hopes to find new ways to disrupt and disarm 'enveloped viruses' before they spread in our bodies.

Team members, Dr John Sanderson and Dr Paul Yeo from Durham University have helped produce the first ever, high-resolution, full-length structure of a protein from an enveloped virus called the 'matrix protein'.

Viruses work in many different ways but in this case, respiratory syncytial virus (RSV) virions form by a 'budding' process at the plasma membrane of a cell. The matrix protein appears to drive the final assembly process and the formation of viral filaments. It is also clear that the matrix protein is an important determinant of where the virus buds.

Using x-ray crystallography, the team's been able to see the intimate details of the matrix protein that controls how the RSV virus assembles inside a cell. The technique allows them to see how the virus protein functions and this could help the team to develop biochemical tools to treat respiratory ailments and the common cold.

Dr Yeo said: "We can now see what the protein virus structure looks like and we plan to pull the protein apart to see how and where it might be intercepted. These images provide amazing insights into the micro-chemical world of our cells. We have an opportunity to use bioactive chemistry to develop the medical tools of the future."

The team, funded by Durham University, the Wolfson Institute and One North East, looked at the matrix protein of respiratory syncytial virus (RSV), a virus which is the most dangerous respiratory virus affecting infants and for which there is no vaccine. About one in three people suffering a cold are affected by this particular enveloped virus. They are looking at the way in which the matrix protein pulls the virus together and assembles at the membrane of a cell. This interaction is crucial to the development of cellular disease.

Dr John Sanderson said; "Enveloped viruses can be extremely dangerous. They enter the cell and hijack its machinery. They assemble their own cell parts of proteins and nucleic acids, before pinching off a bit of the membrane lining of a cell, in this case the lung, and going on to infect new cells. Our new hi-resolution structure can help us to see how to disrupt that process."

Durham's researchers have looked closely at the different stages of virus assembly and replication and they are particularly interested at the stage where the virus assembles. It's at this stage that they intend to disrupt the protein.

Dr Paul Yeo said: "If you can intercept the virus at the right time, just before it exits the cell, then your immune system can deal with it. Almost all envelope viruses have to assemble and we want to see how the mechanism works, how the virus latches on to cells and how it buds inside them."

The researchers grew crystals of the protein, crystallized them, and then used x-ray diffraction to determine the position in space of every atom of the protein. The information was then used to create images of the protein's structure. These images enable the team see what different parts of the matrix protein do.

If scientists can understand how the protein binds to cell membranes, then chemists and biological scientists may be able to develop tools to stop the protein mechanism working; this could be a stepping stone to the development of drugs to fight viruses like RSV. The Durham team also hopes to work on other viruses such as Hepatitis C and measles.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New discovery Could Stimulate Plant Growth and Increase Crop Yields
Researchers at Durham University have discovered a natural mechanism in plants that could stimulate their growth even under stress and potentially lead to better crop yields.
Wednesday, January 15, 2014
Matrix Protein Key to Fighting Viruses
A new approach could help scientists intercept one of the viruses that cause respiratory disease and a third of common colds, according to new research from Durham University.
Monday, May 18, 2009
£3m Investment for Durham Stem Cell Research
STEM cell scientists take a step closer to developing pioneering new therapies with the opening of a £3m trio of laboratories at Durham University.
Monday, June 23, 2008
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos