Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Studies on Domesticated Maize Identify Genes that Evolved from Wild Ancestors

Published: Wednesday, June 06, 2012
Last Updated: Wednesday, June 06, 2012
Bookmark and Share
Studies identify genes that played a role in corn domestication as well as variations and similarities between domesticated maize and its wild relatives.

Maize was likely domesticated in Mexico around 10,000 years ago, and since then humans have continued to radically alter the plant's genetic makeup.

Two new papers by a consortium of international researchers, including many at Cornell, identify genes that played a role in corn domestication as well as variations and similarities between domesticated maize and its wild relatives.

The results, published June 3 in Nature Genetics, will help breeders and geneticists make further advancements.

Cornell researchers, led by Edward Buckler, a U.S. Department of Agriculture-Agricultural Research Station (USDA-ARS) geneticist in Cornell's Institute for Genomic Diversity and Cornell adjunct professor of plant breeding and genetics, organized the effort. The USDA-ARS and Cornell researchers also led many aspects of the sequencing, statistics and bioinformatics.

In the first paper, a research team led by Doreen Ware, a computational biologist with the USDA-ARS and an adjunct assistant professor at the Cold Spring Harbor Laboratory, used advanced techniques to sequence the entire genomes of domesticated Zea mays corn and a wild maize relative, Tripsacum, a grass from a sister genus that grows and overwinters in the eastern United States.

While Tripsacum has a larger genome, the researchers found tremendous overlap between it and maize, according to the paper. Due to the similarities, "we may be able to combine the natural variation out there for use in breeding and genetics," Buckler said. The findings suggest that such traits as perennialism and frost- and drought-tolerance found in Tripsacum can likely be integrated into maize.

The maize genome -- which is six times larger than the rice genome and almost as large as the human genome -- is mostly composed of repetitious and "junk" DNA. Scientists have debated whether junk regions between genes matter for phenotype and traits. The genetic analysis reported in the paper showed that the junk regions were important for controlling natural variation. "It looks like those repetitive regions of the genome contribute to about 20 to 40 percent of natural variation," said Buckler.

In the second paper, a research team led by Jeffrey Ross-Ibarra, assistant professor in the Department of Plant Sciences and the Genome Center at the University of California-Davis, analyzed the DNA sequence of 75 wild maize, landraces (locally adapted maize types with traits selected over centuries by rural farmers) and improved (scientifically altered) maize lines, and identified the genes underlying maize domestication and evolution.

"We went from a bushy plant with small ears to a robust plant with big ears today adapted to agricultural fields," said Buckler. "It took well over 1,000 genes to go from that adaptation to the current one, and this study helps identify those 1,000 genes."

Identifying those key genes in modern corn allows geneticists and breeders to target them when using natural variation or transgenics to create varieties with new, desirable traits.

The researchers also found that environment plays a big role in determining which genes control traits. For example, genes that control high yield in a temperate climate were found to be very different from genes that control productivity in the tropics.

The research team also included scientists from the University of California-Davis, Beijing Genomics Institute, Cold Spring Harbor Laboratory, Arizona State University, University of Wisconsin-Madison, University of Minnesota and the University of Missouri.

The studies were funded by the National Science Foundation, USDA, Chinese Ministry of Agriculture, Shenzhen Municipal Government, and U.S. Department of Energy.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Foodborne Pathogen Detection Speeds Up Dramatically
Next-generation sequencing techniques allow rapidly identification of strains of salmonella, quickening responses to potential outbreaks.
Monday, July 21, 2014
Genome Offers Clues to Amphibian-Killing Fungus
A fungus that has decimated amphibians globally is much older than previously thought.
Thursday, May 30, 2013
New DNA Cattle Test Beefs up Dairy and Meat Quality
A genomics technique developed at Cornell to improve corn can now be used to improve the quality of milk and meat.
Wednesday, May 22, 2013
Scientific News
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Bringng NGS to the Crime Lab
New technology being validated in BCI lab for use in Ohio missing persons cases.
Expanding Knowledge of Viral Diversity
Environmental datasets help researchers double the number of microbial phyla known to be infected by viruses.
How Cloud Connectivity Can Combat the Reproducibility Crisis
This infographic explains the reproducibility crisis, and how cloud connectivity can help overcome this problem.
The Power of Model Systems
New insights into the influence of host on the gut microbiome are revealed with in situ light sheet fluorescence microscopy and stochastic mathematical modelling.
New Way To Measure Important Chemical Modification On RNA
Technology could advance stem cells’ use in regenerative medicine, UCLA researchers say.
Mapping Antibody Creation in Humans
Researchers have created the first, detailed map of the body's antibody production, which could suggest new treatment options for immune disorders.
Decoding the Genome of the Olive Tree
A team of scientists from three Spanish centers has sequenced, for the first time ever, the complete genome of the olive tree. This work will facilitate genetic improvement for production of olives and olive oil, two key products in the Spanish economy and diet.
Four Newly-Identified Genes Could Improve Rice
A Japanese research team have applied a method used in human genetic analysis to rice and rapidly discovered four new genes that are potentially significant for agriculture. These findings could influence crop breeding and help combat food shortages caused by a growing population.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!