Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Lead Largest-ever Sequencing Study of Neuroblastoma

Published: Wednesday, January 23, 2013
Last Updated: Wednesday, January 23, 2013
Bookmark and Share
An extensive genomic study of the childhood cancer neuroblastoma reinforces the challenges in treating the most aggressive forms of this disease.

Contrary to expectations, the scientists found relatively few recurrent gene mutations—mutations that would suggest new targets for neuroblastoma treatment. Instead, say the researchers, they have now refocused on how neuroblastoma tumors evolve in response to medicine and other factors.

“This research underscores the fact that tumor cells often change rapidly over time, so more effective treatments for this aggressive cancer will need to account for the dynamic nature of neuroblastoma,” said study leader John M. Maris, MD, director of the Center for Childhood Cancer Research at The Children’s Hospital of Philadelphia (CHOP).

Striking the peripheral nervous system, neuroblastoma usually appears as a solid tumor in a young child’s chest or abdomen. It comprises 7 percent of all childhood cancers, but causes 10 to 15 percent of all childhood cancer-related deaths. Neuroblastoma is notoriously complex, with a broad number of gene changes that can give rise to the disease.

Largest-ever genomic study of high-risk neuroblastoma patients

Maris headed the multicenter research collaborative, the TARGET (Therapeutically Applicable Research to Generate Effective Treatments) initiative, which released its findings today in Nature Genetics. This largest-ever genomic study of a childhood cancer analyzed DNA from 240 children with high-risk neuroblastomas. Using a combination of whole-exome, whole-genome and transcriptome sequencing, the study compared DNA from tumors with DNA in normal cells from the same patients.
Researchers at CHOP and other centers previously discovered neuroblastoma-causing mutations, such as those in the ALK gene. In the subset of patients carrying this mutation, oncologists can provide effective treatments tailored to their genetic profile.

“A few years ago, we thought we would be able to sequence the genomes of individual patients with neuroblastoma, detect their specific cancer-causing mutations, and then select from a menu of treatments,” said Maris. The oncology researchers designed the TARGET study to perform genomic analyses of a large cohort of high-risk neuroblastoma patients, with the goal of mapping out a limited number of treatment strategies. This approach would represent a significant step forward in personalizing neuroblastoma therapy.

Study findings

However, while the researchers confirmed that roughly 10 percent of the study’s neuroblastoma patients had ALK mutations, and found that a handful of other gene mutations each accounted for percentages in the single digits, there were relatively few recurrent mutations in somatic (non-germline) cells. “The relative paucity of recurrent mutations challenges the concept that druggable targets can be defined in each patient by DNA sequencing alone,” wrote the authors.

In the absence of frequently altered oncogenes that drive high-risk neuroblastomas, the authors concluded that most such cases may result from other changes: rare germline mutations, copy number variations and epigenetic modifications during tumor evolution.

“Personalized medicine is more complex than we had hoped,” said Maris. “While there are successes such as those in treating patients whose tumors harbor ALK mutations, this study implies that we must think very differently about how we’ll use genomics to define treatment.” Maris added that neuroblastoma researchers may need to turn to functional genomics, learning which tumors will or won’t respond to treatments, as well as going beyond a static picture of a cancer cell with fixed genetic contents, to devising interventions to deal with dynamic tumor cells that evolve during nervous system development.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Tuesday, August 25, 2015
Scientific News
New Neurodevelopmental Syndrome Identified
Study pinpoints underlying genetic mutations, raising hopes for targeted therapies.
Uncovering Hidden Genomic Alterations that Drive Cancers
Tested on large tumor genomics database, REVEALER method allows researchers to connect genomics to cell function.
Gene Behind Rare Childhood Syndrome Identified
Online activism by one patient’s mother spurred research collaboration which led to the identification of a new genetic syndrome.
Resilience Project Identifies Rare Unaffected Individuals
Researchers from Mount Sinai and Sage Bionetworks report analysis of nearly 600,000 genomes for resilience project.
Rare DNA Will Have Nowhere To Hide
Two National Institutes of Health grants back Rice University effort to develop new diagnostics.
Virus Causing Tilapia Die-Offs Identified
Discovery of the virus causing Tilapia die-offs in Israel and Ecuador points the way to protecting a fish that feeds multitudes.
Children With Cancer To Get New Gene Test
Pilot study will sequence 81 cancer genes in children’s tumours to help personalise cancer treatment.
How The Bat Got Its Wings
Finding may provide clues to human limb development and malformations.
Lupus Study Shows Precision Medicine’s Potential to Define the Genetics of Autoimmune Disease
Researchers at UT Southwestern have used next-generation DNA sequencing technology to identify more than 1,000 gene variants that affect susceptibility to SLE.
Illuminating the Broad Spectrum of Disease
PRISM efficiently tests drug compounds in multiple cell lines simultaneously, accelerating discovery of targeted therapies in the service of precision medicine.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!