Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene Identified Responsible for Disorders of Bones and Connective Tissue

Published: Monday, May 13, 2013
Last Updated: Monday, May 13, 2013
Bookmark and Share
Researchers have identified a gene that when mutated is responsible for a spectrum of disorder.

This finding opens new avenues for research into the diagnosis and treatment of these previously incurable diseases.

Spondyloepimetaphyseal dysplasia with joint laxity, type I or SEMD-JL1 is a disorder of the skeleton resulting in short stature and spinal problems starting from birth, and worsening with age. The disease is also known as SEMD Beighton type.

In order to find the gene responsible for the disorder, Dr. Ikegawa and his team examined the entire coding sequence of the genome of 7 individuals suffering from SEMD-JL1 using next-generation sequencing technology.

The researchers found that the study subjects all had mutations that resulted in significant loss of function of the gene B3GALT6, known to be involved in the biosynthesis of an important component of connective tissue.

To the reseachers’ surprise, mutations in B3GALT6 were also found in patients suffering from a disorder of the connective tissue called Ehlers-Danlos syndrome progeroid type.

The researchers show that a deficiency in the B3GALT6 enzyme results in a spectrum of disorders affecting various tissues, including the skin, bones, cartilage, tendons and ligaments. Their results indicate that B3GALT6 is essential for the development and the maintenance of these tissues.

B3GALT6 is known to encode for an enzyme involved in the biosynthesis of the glucosaminoglycan (GAG) linker region.

“The GAG linker region is key for GAG biosynthesis and proteoglycan metabolism,” explains Dr Ikegawa, “and proteoglycans are important because they are a major component of the matrix of connective tissue in animals.”

“Our findings show that mutations in B3GALT6 cause a spectrum of disorders that were previously thought to belong to different families of diseases — some were thought to be skeletal dysplasia and others connective tissue disorders,” explain the authors.

“More clinical, genetic and biological studies are needed to understand the pathological mechanism of the diseases and the role of GAG metabolism and function,” they conclude.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
Data Mining DNA For Polycystic Ovary Syndrome Genes
A new Northwestern Medicine genome-wide association study of PCOS – the first of its kind to focus on women of European ancestry – has provided important new insights into the underlying biology of the disorder.
Viral Comparisons
ORNL team applies genomics expertise to analyze, map virus sequence database.
The Tree of Life — More Like A Bush
New species evolve whenever a lineage splits off into several. Because of this, the kinship between species is often described in terms of a ‘tree of life’, where every branch constitutes a species.
Ancient Origins of Deadly Lassa Virus Uncovered
Working as part of an international team in North America and West Africa, a researcher at The Scripps Research Institute (TSRI) has published new findings showing the ancient roots of the deadly Lassa virus, a relative of Ebola virus, and how Lassa virus has changed over time.
Furthering Data Analysis of Next-gen Sequencing to Facilitate Research
Researchers at Cincinnati Children's Hospital Medical Center have developed a user-friendly, integrated platform for analyzing the transcriptomic and epigenomic "big data.
Statistical Technique Helps Researchers Understand Tumor Makeup, Personalize Cancer Treatments
A new statistical method for analyzing next-generation sequencing (NGS) data that helps researchers study the genome of various organisms such as human tumors and could help bring about personalized cancer treatments has been unveiled.
‘Fishing Expedition’ Nets Nearly Tenfold Increase in Number of Sequenced Virus Genomes
Newly developed computational tool finds 12,500 genomes of viruses that infect microbes.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!