Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New DNA Cattle Test Beefs up Dairy and Meat Quality

Published: Wednesday, May 22, 2013
Last Updated: Wednesday, May 22, 2013
Bookmark and Share
A genomics technique developed at Cornell to improve corn can now be used to improve the quality of milk and meat.

A team led by Ikhide Imumorin, Cornell assistant professor of animal science, is the first to apply a new, inexpensive yet powerful genomics technique to cattle called genotyping-by-sequencing (GBS). The protocol contains only four basic steps from DNA to data, and Imumorin’s work demonstrated it generates enough markers to put cattle genomics on the fast track.

“Breeders are interested in cattle with traits such as high meat or milk quality, disease resistance and heat tolerance, but identifying the best animals means sorting through thousands of unique gene variants in the genome,” said Imumorin. “Until recently, the cost of genomics techniques has set too high a bar for breeders, and many cattle species, particularly those outside the United States and Europe found in Africa and Asia, were excluded from the genomics revolution.”

Using samples from 47 cattle from six breeds from the United States and Nigeria, Imumorin’s team used GBS to identify more than 50,000 genetic markers for genetic profiling. GBS was developed by Rob Elshire, researcher in the lab of Ed Buckler, a research geneticist with the U.S. Department of Agriculture (USDA) Agricultural Research Service and adjunct professor of plant breeding and genetics at Cornell.

The team’s analysis showed the markers were preferentially located in or near the gene-rich regions in the arms of the chromosome, making them well sited for tagging genes in genetic studies. The researchers also demonstrated that the markers accurately detect the relationships among the breeds.

“GBS democratizes genetic profiling, and our work shows its usefulness in livestock,” said Imumorin. “While a genetic profile could run $70 to $150 per individual using commercially available methods, GBS brings the cost down to around $40 a sample or less. It’s a very exciting time.”

Imumorin predicts that GBS will be deployed by breeders and geneticists scanning herds for superior breeding stock. He cited the example of how selection of bulls for use in breeding programs will be streamlined through GBS-driven genome analysis around the world without the steep cost of commercial SNP chips, the standard tool based on gene variants discovered in European cattle breeds and made into off-the-shelf genotyping chips.

“For example, a bull can have genes for superior milk production, but the only way to test that is to evaluate milk production in his daughters,” said Imumorin. “A bull will be at least five years old before two generations of his offspring can be evaluated, and that’s a long time for breeders to take care of a bull that may not make the final cut. These techniques hasten the day when a bull’s value can be assessed using genetics on its day of birth more cheaply than we can do now.”

The study was funded by Pfizer Animal Health (now Zoetis Inc.), the USDA National Institute of Food and Agriculture and USDA Federal Formula Hatch Funds appropriated to the Cornell University Agricultural Experiment Station.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Foodborne Pathogen Detection Speeds Up Dramatically
Next-generation sequencing techniques allow rapidly identification of strains of salmonella, quickening responses to potential outbreaks.
Monday, July 21, 2014
Genome Offers Clues to Amphibian-Killing Fungus
A fungus that has decimated amphibians globally is much older than previously thought.
Thursday, May 30, 2013
Studies on Domesticated Maize Identify Genes that Evolved from Wild Ancestors
Studies identify genes that played a role in corn domestication as well as variations and similarities between domesticated maize and its wild relatives.
Wednesday, June 06, 2012
Scientific News
NASA's DNA Sequencing in Space is a Success
DNA has been sequenced in space for the first time ever for the Biomolecule Sequencer investigation, using the MinION sequencing device.
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Bringing NGS to the Crime Lab
New technology being validated in BCI lab for use in Ohio missing persons cases.
Expanding Knowledge of Viral Diversity
Environmental datasets help researchers double the number of microbial phyla known to be infected by viruses.
How Cloud Connectivity Can Combat the Reproducibility Crisis
This infographic explains the reproducibility crisis, and how cloud connectivity can help overcome this problem.
The Power of Model Systems
New insights into the influence of host on the gut microbiome are revealed with in situ light sheet fluorescence microscopy and stochastic mathematical modelling.
New Way To Measure Important Chemical Modification On RNA
Technology could advance stem cells’ use in regenerative medicine, UCLA researchers say.
Mapping Antibody Creation in Humans
Researchers have created the first, detailed map of the body's antibody production, which could suggest new treatment options for immune disorders.
Decoding the Genome of the Olive Tree
A team of scientists from three Spanish centers has sequenced, for the first time ever, the complete genome of the olive tree. This work will facilitate genetic improvement for production of olives and olive oil, two key products in the Spanish economy and diet.
Four Newly-Identified Genes Could Improve Rice
A Japanese research team have applied a method used in human genetic analysis to rice and rapidly discovered four new genes that are potentially significant for agriculture. These findings could influence crop breeding and help combat food shortages caused by a growing population.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!