" "
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Saskatchewan Scientists Release DNA Sequence of New Industrial Oilseed Crop

Published: Tuesday, August 06, 2013
Last Updated: Tuesday, August 06, 2013
Bookmark and Share
Camelina, an oilseed crop popular in Europe prior to the dominance of rapeseed and canola, is increasingly recognized as a valuable industrial oil platform.

Camelina oil is gaining prominence as a feedstock for the production of biodiesel and jet fuel. The crop’s oil profile can also be enhanced for other applications such as high value lubricants and bioplastics. The residual meal left over after oil extraction is an attractive feed supplement for livestock and aquaculture operations. The crop has a number of advantages for production in the Canadian Prairies including resistance to common pathogens and pests, notably blackleg and flea beetles, high tolerance to drought conditions, and represents another option for producers in their crop rotation.

Recognizing the important potential for this emerging crop, Genome Prairie’s “Prairie Gold” project was initiated as a public-private partnership to increase the intellectual and technical resources available to the growing bio-products sector – this included the development of a full genome sequence of Camelina. On August 1st, 2013, the Prairie Gold team announced the successful completion of this objective and has made this information available to all stakeholders in the sector.

Camelina is a technically difficult species to sequence, and the latest in next-generation sequencing techniques were needed in order to assemble a complete and high quality genome sequence. One interesting feature is that the gene complement appears to be almost three times larger than that of Arabidopsis thaliana, the closely related species that is widely used as a model in laboratory settings. This is likely the result of two genome duplication events in a common ancestor in Camelina’s evolutionary past.

According to Reno Pontarollo, CEO of Genome Prairie, “the completion of the Camelina genome sequence marks an important milestone that will enable local businesses to be more innovative in developing Camelina-based value-added industrial bioproducts.”

The most important use of the genome sequence will be for current and future breeding applications. “When combined with a high-density genetic map, also developed as part of the project, we now have the most complete picture of the Camelina genome to-date,” said lead Agriculture and Agri-Food Canada scientist, Isobel Parkin.

Jack Gruscow, CEO of Linnaeus Plant Sciences, added that “the genome sequence and the associated resources will be a core resource for developing improved Camelina varieties that will help us develop mutually profitable partnerships with producers while providing an environmentally friendly, high value product to our clients.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Milestone Resource in Wheat Research Now Available for Download
Leading on from The Genome Analysis Centre’s (TGAC) previous announcement of their new bread wheat genome assembly, the landmark resource is now publically available to download at the European Bioinformatics Institute’s (EMBL-EBI) Ensembl database for full analysis.
Tracing a Cellular Family Tree
New technique allows tracking of gene expression over generations of cells as they specialize.
Minor Flu Strains Pack a Bigger Punch
Minor variants of flu strains, which are not typically targeted in vaccines, carry a bigger viral punch than previously realized, a team of scientists has found.
Euformatics Partners With EMQN, UK NEQAS
Euformatics has announced a strategic partnership with the largest External Quality Assessment (EQA) scheme providers in Europe – EMQN and UK NEQAS for Molecular Genetics.
Precision Medicine for Penile Cancer
Defining the genomic landscape reveals similarities with other squamous cell cancers.
Research at St Thomas’s Hospital Exploring Causative Factors of Atopic Eczema and Food Allergy in Infants
Carsten Flohr and his research group at St Thomas’s hospital, London are currently investigating the interaction between skin and gut microbiota in relation to the associated risk of atopic eczema (AE) and food allergy in infants.
Gut Bacteria Can Dramatically Amplify Cancer Immunotherapy
Manipulating microbes maximizes tumor immunity in mice.
Proteins Crucial to Loss of Hearing Identified
Proteins play key role in genes that help auditory hair cells grow.
New Virus Identified In Blood Supply
Scientists have discovered a new virus that can be transmitted through the blood supply.
Far-reaching Genetic Study of 1,000 UK People
300,000 gene variants from 1,000 people made publically available via F1000Research.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!