Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Saskatchewan Scientists Release DNA Sequence of New Industrial Oilseed Crop

Published: Tuesday, August 06, 2013
Last Updated: Tuesday, August 06, 2013
Bookmark and Share
Camelina, an oilseed crop popular in Europe prior to the dominance of rapeseed and canola, is increasingly recognized as a valuable industrial oil platform.

Camelina oil is gaining prominence as a feedstock for the production of biodiesel and jet fuel. The crop’s oil profile can also be enhanced for other applications such as high value lubricants and bioplastics. The residual meal left over after oil extraction is an attractive feed supplement for livestock and aquaculture operations. The crop has a number of advantages for production in the Canadian Prairies including resistance to common pathogens and pests, notably blackleg and flea beetles, high tolerance to drought conditions, and represents another option for producers in their crop rotation.

Recognizing the important potential for this emerging crop, Genome Prairie’s “Prairie Gold” project was initiated as a public-private partnership to increase the intellectual and technical resources available to the growing bio-products sector – this included the development of a full genome sequence of Camelina. On August 1st, 2013, the Prairie Gold team announced the successful completion of this objective and has made this information available to all stakeholders in the sector.

Camelina is a technically difficult species to sequence, and the latest in next-generation sequencing techniques were needed in order to assemble a complete and high quality genome sequence. One interesting feature is that the gene complement appears to be almost three times larger than that of Arabidopsis thaliana, the closely related species that is widely used as a model in laboratory settings. This is likely the result of two genome duplication events in a common ancestor in Camelina’s evolutionary past.

According to Reno Pontarollo, CEO of Genome Prairie, “the completion of the Camelina genome sequence marks an important milestone that will enable local businesses to be more innovative in developing Camelina-based value-added industrial bioproducts.”

The most important use of the genome sequence will be for current and future breeding applications. “When combined with a high-density genetic map, also developed as part of the project, we now have the most complete picture of the Camelina genome to-date,” said lead Agriculture and Agri-Food Canada scientist, Isobel Parkin.

Jack Gruscow, CEO of Linnaeus Plant Sciences, added that “the genome sequence and the associated resources will be a core resource for developing improved Camelina varieties that will help us develop mutually profitable partnerships with producers while providing an environmentally friendly, high value product to our clients.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Biomarkers That Could Help Give Cancer Patients Better Survival Estimates Discovered
UCLA research may also help scientists suppress dangerous genetic sequences.
Mobile Laboratories Help Track Zika Spread Across Brazil
Researchers from the University of Birmingham are working with health partners in Brazil to combat the spread of Zika virus by deploying a pair of mobile DNA sequencing laboratories on a medical ‘road trip’ through the worst-hit areas of the country.
How “Silent” Genetic Changes Drive Cancer
The researchers found that EXOSC2 expression is enhanced in metastatic tumors because their cells have increased levels of a tRNA called GluUUC.
‘Jumping Gene’ Took Peppered Moths To The Dark Side
Researchers from the University of Liverpool have identified and dated the genetic mutation that gave rise to the black form of the peppered moth, which spread rapidly during Britain’s Industrial Revolution.
How Did The Giraffe Get Its Long Neck?
Clues about the evolution of the giraffe’s long neck have now been revealed by new genome sequencing.
Big Data Can Save Lives
The sharing of genetic information from millions of cancer patients around the world could be key to revolutionising cancer prevention and care, according to a leading cancer expert from Queen's University Belfast.
Making Genetic Data Easier to Search
Scripps team streamlines biomedical research by making genetic data easier to search.
Collaborative Study of WES Offers New Hope
Company has announced that the collaborative study of whole exome sequencing offers new hope for children with white matter disorders.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!