Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Use Genome Sequencing to Prove Herbal Remedy Causes Upper Urinary Tract Cancers

Published: Monday, August 12, 2013
Last Updated: Monday, August 12, 2013
Bookmark and Share
DNA mutation "signature" identified in cancers linked to birthwort herb.

Genomic sequencing experts at Johns Hopkins partnered with pharmacologists at Stony Brook University to reveal a striking mutational signature of upper urinary tract cancers caused by aristolochic acid, a plant compound contained in herbal remedies used for thousands of years to treat a variety of ailments such as arthritis, gout and inflammation. Their discovery is described in the Aug. 7 issue of Science Translational Medicine.

Aristolochic [pronounced a-ris-to-lo-kik] acid is found in the plant family "Aristolochia," a vine known widely as birthwort, and while the U.S. Food and Drug Administration first warned of its cancer-causing potential in 2001, botanical products and herbal remedies containing it can still be purchased online. Moreover, the vine has been found to be an environmental carcinogen through the contamination of food supplies of farming villages in the Balkans, where Aristolochia grows wildly in the local wheat fields. For years, scientists have known of some mutations in upper urinary tract cancer patients exposed to the plant toxin. But the genome-wide spectrum of mutations associated with aristolochic acid exposure remained largely unknown.

For the current study, the Johns Hopkins and Stony Brook team used whole-exome sequencing on 19 Taiwanese upper urinary tract cancer patients exposed to aristolochic acid, and seven patients with no suspected exposure to the toxin. The technique scours the exome, part of the human genome that contains codes for functional proteins and can reveal particular mutations, in this case, those associated with cancer.

"Genome-wide sequencing has allowed us to tie aristolochic acid exposure directly to an individual getting cancer," Kenneth Kinzler, Ph.D., professor of oncology in the Johns Hopkins Kimmel Cancer Center's Ludwig Center for Cancer Genetics and Therapeutics. "The technology gives us the recognizable mutational signature to say with certainty that a specific toxin is responsible for causing a specific cancer. Our hope is that using the more targeted whole-exome-sequencing process will provide the necessary data to guide public health decisions related to cancer prevention."

Specifically, Kinzler says they found an average of 753 mutations in each tumor from the toxin-exposed group compared with 91 in tumors from the non-exposed group. This level of mutation is more than that found in melanomas caused by ultraviolet radiation and lung cancer caused by smoking.

Members of the  toxin-exposed group had a large number of a particular, rare type of mistake (a mutational signature) in the ATCG chemical code of their DNA. The predominant mutation type in the toxin-exposed tumors (72 percent) was an A substituted with a T. In one instance, the scientists used the mutational signature to uncover an artistolochic-related tumor in a patient who was unaware of prior exposure.

This study illustrates how genomic sequencing could also be used to pinpoint a culprit carcinogen in some cancer clusters, says Margaret L. Hoang, Ph.D., lead author of the study. Cancer clusters are defined as an unusually large number of similar cancers occurring within a specific group of people, geographic area or period of time.

The research was funded by the Virginia and DK Ludwig Fund for Cancer Research, the Commonwealth Foundation and the Howard Hughes Medical Institute.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Autism-Causing Genetic Variant Identified
Novel approach expected to be useful for other diseases too.
Saturday, March 28, 2015
Scientists Pair Blood Test and Gene Sequencing to Detect Cancer
Scientists have combined the ability to detect cancer DNA in the blood with genome sequencing technology in a test that could be used to screen for cancers, monitor cancer patients for recurrence and find residual cancer left after surgery.
Friday, November 30, 2012
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Antibiotics Discovered While Sifting Through Human Microbiome
Researchers identify genes in a microbe’s genome that produce antibiotic compounds, then synthesize them without the need for bacterial culture.
A Genome-wide View of Human DNA Viruses
In this study, Duplex sequencing was used to accurately analyse the genome-wide rate of spontaneous mutation of human adenovirus C5 (HAdv5).
Peer Review is in Crisis, But Should be Fixed, Not Abolished
After the time to get the science done, peer review has become the slowest step in the process of sharing studies, and some scientists have had enough.
Rare Immunodeficiency Yields Unexpected Insights
Scientists uncover previously unknown gene mutation revealing the role of a key molecule involved in immune cell development.
Illumina Contributes to ClinVar Database
The contribution includes variants of all classifications, from pathogenic to benign, identified during interpretation of whole genome sequences generated in the CLIA-certified, CAP-accredited Illumina Clinical Services Laboratory.
Agilent Presents Early Career Professor Award to Dr. Roeland Verhaak
JAX professor recognized for the development and implementation of workflows for the analysis of big-data from transcriptomics to next generation sequencing approaches.
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!