Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Accurate Detection of Extremely Rare Mitochondrial DNA Deletions Associated with Aging

Published: Thursday, September 05, 2013
Last Updated: Thursday, September 05, 2013
Bookmark and Share
The study published in Aging Cell identifies a new tool to accurately analyze extremely rare mitochondrial DNA deletions associated with a range of diseases and disorders as well as aging.

This approach, which relies on Droplet Digital PCR (ddPCR™) technology, will help researchers explore mitochondrial DNA (mtDNA) deletions as potential disease biomarkers.

The accumulation of mtDNA mutations is associated with aging, neuromuscular disorders, and cancer. However, methods to probe the underlying mechanisms behind this mutagenesis have been limited by their inability to accurately quantify and characterize new deletion events, which may occur at a frequency as low as one deletion event per 100 million mitochondrial genomes in normal tissue. To address these limitations, researchers at the Seattle, Washington-based Fred Hutchinson Cancer Research Center developed a ddPCR-based assay known as "Digital Deletion Detection" (3D) that allows for the high-resolution analysis of these rare deletions.

"It is incredibly difficult to study mtDNA mutations, let alone deletions, within the genome," said Dr. Jason Bielas, Assistant Member of the Public Health Sciences Division at the Fred Hutchinson Cancer Research Center and lead author of the study. "Our 3D assay shows significant improvement in specificity, sensitivity, and accuracy over conventional methods such as those that rely on real-time PCR."

Bielas added, "The increase in throughput afforded by droplet digital PCR shortened the analysis of deletion events to days compared to months using previous digital PCR methods. Without the technology, we could not have made this discovery."

At the center of the study was Bio-Rad Laboratories' QX100™ ddPCR system. Using the QX100 system, Bielas and his team analyzed eight billion human brain mtDNA genomes and identified more than 100,000 genomes with a deletion. They discovered that, contrary to popular belief, the majority of the increase in mtDNA deletions was not caused by new deletions but rather by the expansion of previous deletions. They hypothesized that the expansion of pre-existing mutations should be considered as the primary factor contributing to age-related accumulation of mtDNA deletions.

How the 3D Assay Works
3D is a novel three-step process that includes enrichment for deletion-bearing molecules, single-molecule partitioning of genomes into droplets for direct quantification via ddPCR, and breakpoint characterization using next-generation sequencing.

Once the enrichment process is completed using methods previously developed by Bielas and colleagues, the concentration of molecules within the droplets is adjusted by using the QX100 system so that the majority of droplets contain no mutant genomes while a small fraction contain only one. This process allows each deletion to be amplified without bias and without introducing the artifacts that are common in qPCR.

Following amplification, deletions can be analyzed using ddPCR to determine the absolute concentration of mutated molecules. Using the relationship between droplet fluorescence and amplicon size, Bielas and his team were able to characterize the size and complexity (whether they were a result of a few clonal expansions or a large collection of random deletions) of rare mitochondrial deletions in human brain samples.

The 3D assay provides an important new tool that will allow researchers to better study the mechanisms of deletion formation and expansion, and their role in aging. Droplet digital PCR's high throughput and increased sensitivity will also allow Bielas' lab to target other low-level disease-causing mtDNA deletions in skeletal muscle, brain tissue, and blood.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Bio-Rad Acquires Sequencing Technology Company GnuBIO
GnuBIO is a privately-held life sciences company that has developed a droplet-based DNA sequencing technology.
Friday, April 11, 2014
Accurate Quantification of NGS Libraries
A study has found that Droplet Digital PCR (ddPCR™) can be used as an accurate and precise method for quality control of NGS libraries.
Tuesday, August 20, 2013
Scientific News
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
Web App Helps Researchers Explore Cancer Genetics
Brown University computer scientists have developed a new interactive tool to help researchers and clinicians explore the genetic underpinnings of cancer.
New Research Advances Genetic Studies in Wildlife Conservation
‘Next-gen’ DNA sequencing of non-invasively collected hair expands field of conservation genetics.
Gene Testing Now Allows Precision Medicine for Thoracic Aneurysms
Researchers at the Aortic Institute at Yale have tested the genomes of more than 100 patients with thoracic aortic aneurysms, a potentially lethal condition, and provided genetically personalized care.
OGT’s Popular ESHG Workshop Free to View Online
Learn about the next generation of microarrays in one of the best attended workshops of the conference.
Discordant NIPT Test Results May Reflect Presence of Maternal Cancer
Results published in Journal of the American Medical Association.
Sperm RNA Test May Improve Evaluation of Male Infertility
To help resolve uncertainty—and guide prospective parents to the right fertility treatments—scientists propose the use of a new kind of fertility test. It involves examining sperm RNA by means of next-generation sequencing.
How the Mammoth Got its Wool
Evolutionary change in a gene reconstructed in the lab from the woolly mammoth was part of a suite of adaptations that allowed the mammoth to survive in harsh arctic environments, according to new research.
NuGEN Scientists Screen 400+ Genes for Fusion Events in Single Assay
Breakthrough proves efficacy of new sample preparation method that could accelerate cancer research and development of treatments and diagnostic tests.
More Accurate and Comprehensive Whole Genome Assembly
Scientists from the Icahn School of Medicine at Mount Sinai have developed a new approach to build nearly complete genomes by combining high-throughput DNA sequencing with genome mapping.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!