Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Program Explores the Use of Genomic Sequencing in Newborn Healthcare

Published: Friday, September 20, 2013
Last Updated: Friday, September 20, 2013
Bookmark and Share
Can sequencing of newborns' genomes provide useful medical information beyond what current newborn screening already provides?

Pilot projects to examine this important question are being funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the National Human Genome Research Institute (NHGRI), both parts of the National Institutes of Health. Awards of $5 million to four grantees have been made in fiscal year 2013 under the Genomic Sequencing and Newborn Screening Disorders research program. The program will be funded at $25 million over five years, as funds are made available.

"Genomic sequencing has potential to diagnose a vast array of disorders and conditions at the very start of life," said Alan E. Guttmacher, M.D., director of NICHD.  "But the ability to decipher an individual's genetic code rapidly also brings with it a host of clinical and ethical issues, which is why it is important that this program explores the trio of technical, clinical, and ethical aspects of genomics research in the newborn period."

The awards will fund studies on the potential for genome and exome sequencing to expand and improve newborn health care. Genomic sequencing examines the complete DNA blueprint of the cells, and exome sequencing is a strategy to selectively sequence exons, the short stretches of DNA within our genomes that code for proteins.

"We are at a point now where powerful new genome sequencing technologies are making it faster and more affordable than ever to access genomic information about patients," said Eric D. Green, M.D., Ph.D., director of NHGRI. "This initiative will help us better understand how we can appropriately use this information to improve health and prevent disease in infants and children."

Programs currently screen almost all of the more than 4 million infants born in the United States each year. Until now, the testing of DNA has not been a first-line newborn screening method, but has been used to confirm the screening results of some disorders, such as cystic fibrosis.

Each of the new awards will consist of three parts: Genomic sequencing and analysis; research related to patient care; and the ethical, legal and social implications of using genomic information in the newborn period. Teams of researchers will work to further the understanding of disorders that appear in newborns and to improve treatments for these diseases using genomic information. Participation is voluntary for those research studies that involve returning results of DNA sequencing to families and physicians, and requires that families provide informed consent. Other research focuses on the analysis of de-identified data, which may be useful in developing and improving screening tests.

The four grantees are:

•    Brigham and Women's Hospital and Boston Children's Hospital, Boston
Principal Investigators: Robert Green, M.D., and Alan Beggs, Ph.D.

This research project will accelerate the use of genomics in pediatric medicine by creating and safely testing new methods for using information obtained from genomic sequencing in the care of newborns. It will test a new approach to newborn screening, in which genomic data are available as a resource for parents and doctors throughout infancy and childhood to inform health care.  A genetic counselor will provide the genomic sequencing information and newborn screening results to the families.  Parents will then be asked about the impact of receiving genomic sequencing results and if the information was useful to them.  Researchers will try to determine if the parents respond to receiving the genomic sequencing results differently if their newborns are sick and if they respond differently to receiving genomic sequencing results as compared to current newborn screening results. Investigators will also develop a process for reporting results of genomic sequencing to the newborns' doctors and investigate how they act on these results.
 
•    Children's Mercy Hospital - Kansas City, Mo.
Principal Investigator: Stephen Kingsmore, M.D.

Many newborns require care in a neonatal intensive care unit (NICU), and this group of newborns has a high rate of disability and death. Given the severity of illness, these newborns may have the most to gain from fast genetic diagnosis through the use of genomic sequencing. The researchers will examine the benefits and risks of using rapid genomic sequencing technology in this NICU population. They also aim to reduce the turnaround time for conducting and receiving genomic sequencing results to 50 hours, which is comparable to other newborn screening tests. The researchers will test if their methods increase the number of diagnoses or decrease the time it takes to reach a diagnosis in NICU newborns. They will also study if genomic sequencing changes the clinical care of newborns in the NICU.  Additionally, the investigators are interested in doctor and parent perspectives and will try to determine if parents' perception of the benefits and risks associated with the results of sequencing change over time.
 
•    University of California, San Francisco
Principal Investigator: Robert Nussbaum, M.D.

This pilot project will explore the potential of exome sequencing as a method of newborn screening for disorders currently screened for and others that are not currently screened for, but where newborns may benefit from screening. The researchers will examine the value of additional information that exome sequencing provides to existing newborn screening that may lead to improved care and treatment. Additionally, the researchers will explore parents' interest in receiving information beyond that typically available from newborn screening tests. The research team also intends to develop a participant protection framework for conducting genomic sequencing during infancy and will explore legal issues related to using genome analysis in newborn screening programs. Together, these studies have the potential to provide public health benefit for newborns and research-based information for policy makers.
 
•    University of North Carolina at Chapel Hill
Principal Investigators: Cynthia Powell, M.D., M.S., and Jonathan Berg, M.D., Ph.D.

In this pilot project, researchers will identify, confront and overcome the challenges that must be met in order to implement genomic sequencing technology to a diverse newborn population. The researchers will sequence the exomes of healthy infants and infants with known conditions such as phenylketonuria, cystic fibrosis or other disorders involving metabolism. Their goal is to help identify the best ways to return results to doctors and parents. The investigators will explore the ethical, legal and social issues involved in helping doctors and parents make informed decisions, and develop best practices for returning results to parents after testing. The researchers will also develop a tool to help parents understand what the results mean and examine extra challenges that doctors may face as this new technology is used. This study will place a special emphasis on including multicultural families.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Expansion of Genome Research will Benefit Two Boston-area Research Centers
Federal health officials announced an expanded investment in understanding the genetic underpinnings of disease, and two Boston-area institutions will share in the funding to do basic research and answer emerging questions about the social, ethical, and financial repercussions of using genomics in standard medicine.
Wednesday, December 07, 2011
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
Web App Helps Researchers Explore Cancer Genetics
Brown University computer scientists have developed a new interactive tool to help researchers and clinicians explore the genetic underpinnings of cancer.
New Research Advances Genetic Studies in Wildlife Conservation
‘Next-gen’ DNA sequencing of non-invasively collected hair expands field of conservation genetics.
Gene Testing Now Allows Precision Medicine for Thoracic Aneurysms
Researchers at the Aortic Institute at Yale have tested the genomes of more than 100 patients with thoracic aortic aneurysms, a potentially lethal condition, and provided genetically personalized care.
OGT’s Popular ESHG Workshop Free to View Online
Learn about the next generation of microarrays in one of the best attended workshops of the conference.
Discordant NIPT Test Results May Reflect Presence of Maternal Cancer
Results published in Journal of the American Medical Association.
Sperm RNA Test May Improve Evaluation of Male Infertility
To help resolve uncertainty—and guide prospective parents to the right fertility treatments—scientists propose the use of a new kind of fertility test. It involves examining sperm RNA by means of next-generation sequencing.
How the Mammoth Got its Wool
Evolutionary change in a gene reconstructed in the lab from the woolly mammoth was part of a suite of adaptations that allowed the mammoth to survive in harsh arctic environments, according to new research.
NuGEN Scientists Screen 400+ Genes for Fusion Events in Single Assay
Breakthrough proves efficacy of new sample preparation method that could accelerate cancer research and development of treatments and diagnostic tests.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!