Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Mayo Clinic Researchers Identify Role of Cul4 Molecule in Genome Instability and Cancer

Published: Monday, November 11, 2013
Last Updated: Monday, November 11, 2013
Bookmark and Share
Cul4 helps to deposit DNA-packaging histone proteins onto DNA, an integral step to help compact the genetic code.

When DNA isn't packaged correctly, it can lead to the genomic instability characteristic of many forms of cancer. The research is published in the Nov. 7 issue of the journal Cell. The results explain on a molecular level how Cul4 enables the handoff of histones from the proteins escorting them from their birthplace in the cell to their workplace on the DNA, where they can begin wrapping DNA up into tidy units called nucleosomes.

"We suggest that cancer cells may have evolved a mechanism to disrupt proper nucleosome assembly by altering Cul4 and other factors, which in turn could affect the stability of the genome and promote the formation of tumors," says senior study author Zhiguo Zhang, Ph.D., a molecular biologist at Mayo Clinic.

To protect the integrity of the genome, DNA is packaged tightly, first around spools of histone to form nucleosomes, then stacked on top of each other to form chromatin and finally looped and coiled to form chromosomes. Depending on whether and how histones interact with a given genetic sequence, the DNA is either closed up tightly within this package or lies open so that the underlying genes can be read and become active.

Researchers have long known that special proteins — called histone chaperones — escort histones around the cell, but how they finally let go of the histones to deposit them onto DNA was unclear.

Dr. Zhang wondered if Cul4, which is altered in a number of human cancers, including breast cancer, squamous cell carcinomas, adrenocortical carcinomas, and malignant mesotheliomas, might be involved. So he and his colleagues developed a series of cellular assays in yeast and in human cells to investigate the role of Cul4 in nucleosome assembly.

They found that Cul4 modifies the chemical entities on the surface of the histones, weakening the interaction between them and the histone chaperones charged with their care. They noticed that the same observations held true in the yeast indicating that the role of Cul4 in nucleosome assembly and genome stability is likely conserved between yeast and human cells.

"We uncovered a novel molecular mechanism whereby Cul4 regulates nucleosome assembly," says Dr. Zhang. "Our finding underscores the fact that proper regulation of the nucleosome assembly pathway is a key step in maintaining genome stability and epigenetic information."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Mayo Clinic Forms Joint Venture with Cancer Genetics
OncoSpire Genomics will seek to discover and commercialize biomarkers for multiple cancer types.
Thursday, May 23, 2013
Why Does Smallpox Vaccine Shield Some, Not Others? It's in the Genes
How well people are protected by the smallpox vaccine depends on more than the quality of the vaccination: individual genes can alter their response, Mayo Clinic research shows.
Tuesday, April 23, 2013
Whole Genome Sequencing used to Help Inform Cancer Therapy
Physicians and researchers at Mayo Clinic in Arizona and the Translational Genomics Research Institute (TGen) have successfully completed sequencing both a single patients normal and cancer cells - more than 6 billion DNA chemical bases.
Wednesday, February 16, 2011
Scientific News
NASA's DNA Sequencing in Space is a Success
DNA has been sequenced in space for the first time ever for the Biomolecule Sequencer investigation, using the MinION sequencing device.
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Bringing NGS to the Crime Lab
New technology being validated in BCI lab for use in Ohio missing persons cases.
Expanding Knowledge of Viral Diversity
Environmental datasets help researchers double the number of microbial phyla known to be infected by viruses.
How Cloud Connectivity Can Combat the Reproducibility Crisis
This infographic explains the reproducibility crisis, and how cloud connectivity can help overcome this problem.
The Power of Model Systems
New insights into the influence of host on the gut microbiome are revealed with in situ light sheet fluorescence microscopy and stochastic mathematical modelling.
New Way To Measure Important Chemical Modification On RNA
Technology could advance stem cells’ use in regenerative medicine, UCLA researchers say.
Mapping Antibody Creation in Humans
Researchers have created the first, detailed map of the body's antibody production, which could suggest new treatment options for immune disorders.
Decoding the Genome of the Olive Tree
A team of scientists from three Spanish centers has sequenced, for the first time ever, the complete genome of the olive tree. This work will facilitate genetic improvement for production of olives and olive oil, two key products in the Spanish economy and diet.
Four Newly-Identified Genes Could Improve Rice
A Japanese research team have applied a method used in human genetic analysis to rice and rapidly discovered four new genes that are potentially significant for agriculture. These findings could influence crop breeding and help combat food shortages caused by a growing population.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!