Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Loblolly Pine Genome Sequenced

Published: Thursday, March 20, 2014
Last Updated: Thursday, March 20, 2014
Bookmark and Share
Largest genome sequenced to date and the most complete conifer genome sequence ever published.

To look at the humble loblolly pine – grown in neat rows on large farms throughout the southeastern U.S. and milled for things like building lumber and paper – you would never think that its genetic code is seven times larger than a human’s.

That is just one of the things researchers, including two from the University of Florida’s Institute of Food and Agricultural Sciences and the UF Genetics Institute, learned as they sequenced the loblolly pine genome for the first time.  They also discovered genes resistant to a devastating pine forest disease.

It is described in the March issues of GENETICS and the journal Genome Biology.

The tree is the primary source of pulpwood and saw timber for the U.S. forest products industry.

The size and complexity of conifer genomes has, until now, prevented full genome sequencing. To sequence a genome, it must first be broken down into smaller, more manageable data pieces in order for computer programs to handle them.  The pieces are then assembled and annotated – or described – as scientists look at each stretch of base pairs to see which genes are present, where they are on the genome and what they do.  Different genes control different traits or characteristics in the living organism. The loblolly pine genome has 22 billion base pairs, while the human genome has 3 billion.

“It’s a huge genome. But the challenge isn’t just collecting all the sequence data. The problem is assembling that sequence into order,” said David Neale, a professor of plant sciences at the University of California, Davis, who led the project.

John M. Davis, professor and associate director of the UF School of Forest Resources and Conservation, and Katherine Smith, a biological science technician with the USDA Forest Service’s Southern Institute of Forest Genetics, took the lead in annotating the genes in a portion of the genome.  They were looking for genes controlling resistance to fusiform rust, a disease that infects southern pines and renders them unfit for wood products. What they found was a whole family of resistance genes.

“Commercially, it is the most economically devastating disease of the southern pines,” Davis said.  “If growers didn’t have genetic resistance, we would have no pine plantations – it’s that important.”

Florida’s nearly 16 million acres of timberland supported economic activities that generated $14.7 billion in economic impact in recent years and provided nearly 90,000 full- and part-time jobs. A molecular understanding of genetic resistance is a valuable tool for forest managers as they select trees that will develop into healthy groves. More than 500 million loblolly pine seedlings with these resistance genes are planted every year throughout the U.S.

The loblolly genome research was conducted in an open-access manner, benefitting all 31 researchers at 13 universities and institutes, even before the genome sequencing effort was completed.  Data have been freely available throughout the project, with three public releases starting in June 2012.

The work was supported in part by the U.S. Department of Agriculture’s National Institute of Food and Agriculture.

Davis said his work is not finished – and might never be – because annotating a genome is a process that goes on forever. 

“It never stops because we are always adding meaning to the genome sequence as we learn about other genomes,” he said.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Veterinarians Hope New Gene Chip will Help Detect, Treat West Nile Virus
A new “gene chip” developed at the University of Florida College of Veterinary Medicine sheds light on brain response in horses infected with West Nile virus and could lead to better ways to diagnose and treat both equines and humans, researchers said.
Friday, December 09, 2011
Scientific News
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Bringng NGS to the Crime Lab
New technology being validated in BCI lab for use in Ohio missing persons cases.
Expanding Knowledge of Viral Diversity
Environmental datasets help researchers double the number of microbial phyla known to be infected by viruses.
How Cloud Connectivity Can Combat the Reproducibility Crisis
This infographic explains the reproducibility crisis, and how cloud connectivity can help overcome this problem.
The Power of Model Systems
New insights into the influence of host on the gut microbiome are revealed with in situ light sheet fluorescence microscopy and stochastic mathematical modelling.
New Way To Measure Important Chemical Modification On RNA
Technology could advance stem cells’ use in regenerative medicine, UCLA researchers say.
Mapping Antibody Creation in Humans
Researchers have created the first, detailed map of the body's antibody production, which could suggest new treatment options for immune disorders.
Decoding the Genome of the Olive Tree
A team of scientists from three Spanish centers has sequenced, for the first time ever, the complete genome of the olive tree. This work will facilitate genetic improvement for production of olives and olive oil, two key products in the Spanish economy and diet.
Four Newly-Identified Genes Could Improve Rice
A Japanese research team have applied a method used in human genetic analysis to rice and rapidly discovered four new genes that are potentially significant for agriculture. These findings could influence crop breeding and help combat food shortages caused by a growing population.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!