Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Foodborne Pathogen Detection Speeds Up Dramatically

Published: Monday, July 21, 2014
Last Updated: Monday, July 21, 2014
Bookmark and Share
Next-generation sequencing techniques allow rapidly identification of strains of salmonella, quickening responses to potential outbreaks.

New York is on the front lines of detecting foodborne pathogen outbreaks, thanks to a partnership between public health scientists and Cornell researchers.

Members of the Cornell Food Safety Lab, led by food science professor Martin Wiedmann and research associate Henk den Bakker, are helping the New York State Department of Health (NYSDOH) harness the capabilities and cost efficiencies of next-generation DNA sequencing techniques to rapidly identify strains of salmonella and read the results in a way that could quicken responses to potential outbreaks.

Traditional methods of assessing bacteria samples submitted to public health laboratories, based on pulsed-field gel electrophoresis (PFGE), often do not deliver the level of precision needed to pinpoint specific strains of pathogens, their relationships to each other and whether they share a common origin – vital information when trying to trace the source of illness outbreaks.

For Salmonella enterica serovar Enteritidis, for instance, 85 percent of isolates can be classified into just five PFGE types, and 40 percent belong to one subtype in particular.

“There’s so little variation in the genome, and when there’s an outbreak, it’s almost impossible to differentiate using that method,” den Bakker said.

By sequencing all 4.5 million base pairs of the bacteria’s DNA using single nucleotide polymorphisms (SNPS) in a technique known as rapid whole-genome sequencing, scientists are able to get much more nuanced information.

“This kind of detailed information improves our ability to tell whether outbreaks are isolated, sporadic or part of a cluster, which allows for more thorough epidemiologic investigations,” said NYSDOH collaborator William J. Wolfgang.

The introduction of small, affordable, bench-top, whole-genome sequencing equipment has made it possible for clinical and public health labs to consider adding the technology to their arsenal. The NYSDOH’s Wadsworth Center in Albany, New York, was one of the first public health labs to make the investment – Cornell was able to provide the bioinformatics expertise to enable the lab to make sense of the data it would be collecting and to analyze it quickly.

Their proof of concept was published July 16 in the Centers of Disease Control journal Emerging Infectious Diseases in a paper that uses a case study of a salmonella outbreak in a long-term care facility to demonstrate how the technique could benefit public health labs.

In a regional collaboration, samples collected by the Connecticut Department of Public Health were sequenced by NYSDOH and analyzed by Cornell, and researchers discovered the outbreak was even larger than suspected. In addition to the seven residents identified in 2010 as being sickened in the outbreak, nine additional samples from patients in surrounding communities matched the main strain.

“This suggests a common contaminated source outside the long-term care facility. Knowledge of these cases at the time of the outbreak might have improved the chances of finding the outbreak source, which was never identified,” the researchers wrote in the paper.

The technique is already gaining traction in several other states through the GenomeTrakr initiative sponsored by the U.S. Food and Drug Administration (FDA), which is providing sequencing equipment, reagents, funds for personnel, and training on the equipment to seven State Public Health Laboratories including New York. In return, the public health labs upload raw sequence data to a centralized site for analysis. Any clusters that appear are reported back to local labs and epidemiologists, allowing for a quick, coordinated response.

The study was partly funded by a grant from the USDA Agriculture and Food Research Initiative, the Center for Food Safety and Applied Nutrition at the FDA and the NYSDOH Wadsworth Center).


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genome Offers Clues to Amphibian-Killing Fungus
A fungus that has decimated amphibians globally is much older than previously thought.
Thursday, May 30, 2013
New DNA Cattle Test Beefs up Dairy and Meat Quality
A genomics technique developed at Cornell to improve corn can now be used to improve the quality of milk and meat.
Wednesday, May 22, 2013
Studies on Domesticated Maize Identify Genes that Evolved from Wild Ancestors
Studies identify genes that played a role in corn domestication as well as variations and similarities between domesticated maize and its wild relatives.
Wednesday, June 06, 2012
Scientific News
Five New Breast Cancer Genes Found
Discovery of mutations paves the way for personalised treatment of breast cancer.
New Neurodevelopmental Syndrome Identified
Study pinpoints underlying genetic mutations, raising hopes for targeted therapies.
Uncovering Hidden Genomic Alterations that Drive Cancers
Tested on large tumor genomics database, REVEALER method allows researchers to connect genomics to cell function.
Gene Behind Rare Childhood Syndrome Identified
Online activism by one patient’s mother spurred research collaboration which led to the identification of a new genetic syndrome.
Resilience Project Identifies Rare Unaffected Individuals
Researchers from Mount Sinai and Sage Bionetworks report analysis of nearly 600,000 genomes for resilience project.
Rare DNA Will Have Nowhere To Hide
Two National Institutes of Health grants back Rice University effort to develop new diagnostics.
Virus Causing Tilapia Die-Offs Identified
Discovery of the virus causing Tilapia die-offs in Israel and Ecuador points the way to protecting a fish that feeds multitudes.
Children With Cancer To Get New Gene Test
Pilot study will sequence 81 cancer genes in children’s tumours to help personalise cancer treatment.
How The Bat Got Its Wings
Finding may provide clues to human limb development and malformations.
Lupus Study Shows Precision Medicine’s Potential to Define the Genetics of Autoimmune Disease
Researchers at UT Southwestern have used next-generation DNA sequencing technology to identify more than 1,000 gene variants that affect susceptibility to SLE.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!