Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Tute Genomics Biomarker Discovery Platform to Support BYU Efforts

Published: Friday, July 25, 2014
Last Updated: Friday, July 25, 2014
Bookmark and Share
Brigham Young University to advance Alzheimer’s disease genetics research.

Tute Genomics has announced that its genome annotation and discovery platform will support Brigham Young University’s (BYU) efforts to advance Alzheimer’s disease genetics research. This collaboration involves analysis and interpretation of next-generation sequencing data from more than 1,000 exomes and genomes to identify new genetic variants associated with the disease.

“Collaboration is the key to discovering novel variants in genomics research, and Tute Genomics is honored to play a role in supporting this important work,” said Dr. Kai Wang, President of Tute Genomics, “This is an example of how our platform significantly enhances the ability for researchers to identify disease genes and variants from thousands of genomes.”

Dr. John “Keoni” Kauwe is leading a group of scientists from the BYU College of Life Sciences that is leveraging Tute Genomics in a large-scale effort to better understand the genetic basis of Alzheimer’s disease. The causes of this brain disease are still not fully understood and traditional treatments have so far proven unsuccessful. Dr. Kauwe’s group is looking to utilize Tute Genomics’ biomarker discovery platform to identify novel targets that may be used for therapeutic interventions.

“We have been extremely impressed with the Tute platform thus far, and we already have a number of research findings we are evaluating. We are excited to utilize Tute’s technology to support our novel approaches to finding genetic variants associated with Alzheimer’s disease using exome and whole genome sequence data,” said Dr. Kauwe.

The Alzheimer’s Genetic Analysis Group is a collaborative effort led by Dr. John Hardy at University College London. Other Principal Investigators in this group include Dr. Kauwe from BYU, Drs. Alison Goate and Carlos Cruchaga at the Washington University School of Medicine, and Dr. Andrew Singleton at the National Institutes of Health. Late last year this group discovered a novel genetic variant that doubles a person’s risk of developing the disease later in life. The study included families that had several members with Alzheimer’s. The scientists sequenced and compared genes of those individuals affected by the disease and those who were not. They were then able to identify variations in a gene that appeared in affected family members.

Another of their recent studies has helped lift the veil on some of the mystery surrounding the causes of Alzheimer’s. The research team analyzed data from more than 25,000 people and reported that a rare genetic mutation in TREM2, a gene with function in the immune and inflammatory response, increases the risk of Alzheimer’s disease.

“Dr. Kauwe and the Alzheimer’s Genetic Analysis Group are making exciting progress towards understanding the genetic underpinnings of Alzheimer’s disease. The first step towards effective treatments and an eventual cure is to fully understand the genetics and neurobiology of the disorder,” said Dr. Reid Robison, co-founder and CEO of Tute Genomics.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tute Genomics Platform Selected to Provide Clinical Interpretation for NextStepDx PLUS
Genetic testing service designed to detect genetic variants linked to autism spectrum disorders and other disorders of childhood development.
Saturday, July 12, 2014
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
Data Mining DNA For Polycystic Ovary Syndrome Genes
A new Northwestern Medicine genome-wide association study of PCOS – the first of its kind to focus on women of European ancestry – has provided important new insights into the underlying biology of the disorder.
Viral Comparisons
ORNL team applies genomics expertise to analyze, map virus sequence database.
The Tree of Life — More Like A Bush
New species evolve whenever a lineage splits off into several. Because of this, the kinship between species is often described in terms of a ‘tree of life’, where every branch constitutes a species.
Ancient Origins of Deadly Lassa Virus Uncovered
Working as part of an international team in North America and West Africa, a researcher at The Scripps Research Institute (TSRI) has published new findings showing the ancient roots of the deadly Lassa virus, a relative of Ebola virus, and how Lassa virus has changed over time.
Furthering Data Analysis of Next-gen Sequencing to Facilitate Research
Researchers at Cincinnati Children's Hospital Medical Center have developed a user-friendly, integrated platform for analyzing the transcriptomic and epigenomic "big data.
Statistical Technique Helps Researchers Understand Tumor Makeup, Personalize Cancer Treatments
A new statistical method for analyzing next-generation sequencing (NGS) data that helps researchers study the genome of various organisms such as human tumors and could help bring about personalized cancer treatments has been unveiled.
‘Fishing Expedition’ Nets Nearly Tenfold Increase in Number of Sequenced Virus Genomes
Newly developed computational tool finds 12,500 genomes of viruses that infect microbes.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!