Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Awards $14.5M for DNA Sequencing Techniques

Published: Tuesday, August 05, 2014
Last Updated: Tuesday, August 05, 2014
Bookmark and Share
For the past several years, nanopore research has been an important focus of the program’s grants.

A number of micro-sized technologies - such as nanopores and microfluidics - are among the approaches researchers will use to develop high quality, low cost DNA sequencing technology through new grants from the National Institutes of Health.

The grants, which total approximately $14.5 million to eight research teams over two to four years as funds become available, are the last to be awarded by the Advanced DNA Sequencing Technology program of the National Human Genome Research Institute (NHGRI), a part of NIH.

The new group of awards - which total more than $4.5 million in the first year - is wide-ranging, and includes several research projects directed at improving the use of nanopores in DNA sequencing or creating nanopore arrays to enable large-scale DNA sequencing efforts.

Nanopore-based DNA sequencing entails threading single DNA strands through tiny pores in a membrane. Bases - the chemical letters of DNA - are read one at a time as they squeeze through the nanopore.

The different bases are identified by measuring differences in their effect on electrical current flowing through the pore. Nanopores used in DNA sequencing are extremely small, perhaps only about 2 nanometers wide, and come in several types: protein; solid state (also called synthetic); and even nanopores made of DNA. A nanometer is 1 billionth of a meter; a human hair is 100,000 nanometers wide.

One of the projects will explore the use of microfluidics in DNA library preparation. A library is a collection of stretches of physical DNA. Microfluidics can be used to capture small amounts of liquid in hair-thin channels and wells. Another team plans to test a method using an enzyme to amplify a signal that will help identify DNA bases.

“While we continue to support many research projects centered on the development of nanopore technology, some of the new grants focus on additional unique approaches to sequencing DNA,” said NHGRI Genome Technology Program Director Jeffery Schloss, Ph.D. Dr. Schloss is also director of the Division of Genome Sciences. “Despite discussion about approaching the goal of sequencing a genome for only $1,000, many challenges remain in terms of containing costs and achieving a high quality of DNA sequencing data.”

This group of awards is the last for the Advanced DNA Sequencing Technology program, which began in 2004.

“There haven’t been many programs like this anywhere else over the years,” Dr. Schloss said. “NHGRI has had a hand in supporting some very novel research, and has helped chart exciting new directions for DNA sequencing technology.”

The new grants are awarded (pending available funds) to:

• University of California Santa Cruz, $2.29 million over three years
Principal Investigator: Mark Akeson, Ph.D.

Investigators plan to sequence single DNA molecules by using a nanopore device comprised of a sensor that touches, examines and identifies each nucleotide, or DNA building block, in a DNA strand as an enzyme motor moves it through the pore. The scientists will focus on DNA “resequencing” - examining the DNA nucleotides over and over - because of the difficulty in accurately reading each strand initially.

• Illumina, Inc., San Diego, $592,000 over two years
Principal Investigator: Boyan Boyanov, Ph.D.

Dr. Boyanov and his team aim to create a hybrid protein solid-state nanopore array system that can enable scientists to sequence DNA on a large scale. Their goal is to improve the robustness of nanopore platforms by combining computer chip fabrication methods with biological nanopores to enable high-throughput sequencing. The latter refers to a very high rate of sequencing DNA by sequencing large numbers of DNA samples in parallel.

• University of Pennsylvania, Philadelphia, $880,000 over two years
Principal Investigator: Marija Drndic, Ph.D.

Investigators plan to develop a synthetic nanopore from graphene - an extremely conductive material consisting of a lattice of atoms, one atom thick - that will enable the detection of individual DNA bases without the need to slow down the DNA molecule as it passes through a pore. Researchers hope to directly identify DNA bases by measuring unique differences in current flowing through the graphene.

• Caerus Molecular Diagnostics, Inc., Mountain View, California, $701,000 over three years
Principal Investigator: Javier Farinas, Ph.D.

Researchers commonly use a system to identify DNA bases that entails making many copies of DNA and detecting a light signal from the DNA. Dr. Farinas and his co-workers plan to test a technology that uses an engineered enzyme switch to convert the product of a single molecule DNA sequencing reaction into many copies of a reporter molecule that are easily detected. The method promises to more accurately identify DNA bases.

• The Scripps Research Institute, La Jolla, California, $4.4 million over four years
Principal Investigator: M. Reza Ghadiri, Ph.D.

Investigators plan to produce protein nanopore arrays in order to sequence tens of thousands of DNA molecules in parallel, with the eventual goal of sequencing a human genome in as little as 10 minutes. They will explore three separate approaches, including arrays of lipid bilayers containing nanopores, protein pores individually embedded in synthetic films, and nanopores made of DNA that are distributed on DNA scaffolds.

• Eve Biomedical, Inc., Mountain View, California, $500,000 over two years
Principal Investigator: Theofilos Kotseroglou, Ph.D.

Researchers will study a system to sequence DNA using an enzyme (polymerase) on a carbon nanotube, in an array format. Carbon nanotubes are long, thin cylindrical tubes that are highly conductive. When an enzyme is anchored on a tube, the enzyme’s motion - while interacting with a DNA sample - changes the conductivity on the nanotube, and enables bases of the sample DNA to be identified.

• University of Washington, Seattle, $1.7 million over three years
Principal Investigator: Jay Shendure, M.D., Ph.D.

Dr. Shendure and his colleagues plan to develop new molecular biology techniques to efficiently and cost-effectively stitch together genomes across long distances. They hope this will help improve the quality of genomes that are generated by new DNA sequencing technologies.

• University of California, San Diego, $3.7 million over four years
Principal Investigators: Kun Zhang, Ph.D. and Xiaohua Huang, Ph.D.

This team plans to develop a system using microfluidics that will enable accurate genome sequencing of a single mammalian cell. Investigators will separate and sequence single chromosomal DNA strands, and then with the help of novel technology to make many copies of genomes, they will create DNA sequence libraries for DNA sequencing of single cells.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genetic Link For Rare Intestinal Cancer
Researchers recommend screening for people with family history.
Thursday, April 16, 2015
Tumor DNA in Blood Reveals Lymphoma Progression
Using an advanced genetic test, researchers were able to detect diffuse large B-cell lymphoma (DLBCL) in blood serum before it could be seen on CT scans.
Tuesday, April 14, 2015
Comprehensive Genomic Study of Sub-Saharan Africans Conducted
New data resource will enhance disease research and genomic diversity studies.
Thursday, December 04, 2014
NIH Exceptional Responders to Cancer Therapy Study Launched
Study to investigate the molecular factors of tumors associated with exceptional treatment responses of cancer patients to drug therapies.
Friday, September 26, 2014
NIH Funds $24M into Alzheimer’s Disease Genome Research
Scientists will analyze genome sequence data to identify gene risk, protective factors.
Tuesday, July 08, 2014
Genetic Disorder Causing Strokes, Vascular Inflammation in Children Discovered
NIH researchers have identified gene variants that cause a rare syndrome of sporadic fevers, skin rashes and recurring strokes, beginning early in childhood.
Thursday, February 20, 2014
Speeding Validation of Disease Targets
NIH, industry and non-profits join forces to develop new treatments earlier, beginning with Alzheimer’s, type 2 diabetes, and autoimmune disorders.
Tuesday, February 04, 2014
NCI Launches Trial to Assess the Utility of Genetic Sequencing to Improve Patient Outcomes
Trial could identify patient sub-groups that are likely to benefit from certain treatments.
Saturday, February 01, 2014
NIH Deposits First Batch of Genomic Data for Alzheimer’s Disease
Researchers can now freely access the first batch of genome sequence data from the Alzheimer’s Disease Sequencing Project (ADSP).
Monday, December 02, 2013
NIH Awards Focus on Nanopore Technology For DNA Sequencing
The use of nanopore technology aimed at more accurate and efficient DNA sequencing is the main focus of grants awarded by the NIH.
Monday, September 09, 2013
New Genes for Childhood Epilepsies Discovered
New strategy may find more genes and provide a better understanding of these and other complex neurological disorders.
Monday, August 12, 2013
NIH, Lacks Family Reach Understanding to Share Genomic Data of HeLa Cells
New NIH policy requires researchers to apply for access to the full genome sequence data from HeLa cells.
Thursday, August 08, 2013
NIH Funds New Grants Exploring Use of Genome Sequencing in Patient Care
NIH has awarded four grants for up to four years to multidisciplinary research teams to explore the use of genome sequencing in medical care.
Wednesday, July 24, 2013
NIH Researchers Conduct First Genomic Survey of Human Skin Fungal Diversity
Location on the body surface determines fungal composition with the greatest diversity on feet.
Thursday, May 23, 2013
New NIH/NHGRI Grants to Harness Nanoscale Technologies to Cut DNA Sequencing Costs
Grants of almost $19 million will help to develop technologies to dramatically reduce the cost of DNA sequencing.
Monday, September 17, 2012
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
Data Mining DNA For Polycystic Ovary Syndrome Genes
A new Northwestern Medicine genome-wide association study of PCOS – the first of its kind to focus on women of European ancestry – has provided important new insights into the underlying biology of the disorder.
Viral Comparisons
ORNL team applies genomics expertise to analyze, map virus sequence database.
The Tree of Life — More Like A Bush
New species evolve whenever a lineage splits off into several. Because of this, the kinship between species is often described in terms of a ‘tree of life’, where every branch constitutes a species.
Ancient Origins of Deadly Lassa Virus Uncovered
Working as part of an international team in North America and West Africa, a researcher at The Scripps Research Institute (TSRI) has published new findings showing the ancient roots of the deadly Lassa virus, a relative of Ebola virus, and how Lassa virus has changed over time.
Furthering Data Analysis of Next-gen Sequencing to Facilitate Research
Researchers at Cincinnati Children's Hospital Medical Center have developed a user-friendly, integrated platform for analyzing the transcriptomic and epigenomic "big data.
Statistical Technique Helps Researchers Understand Tumor Makeup, Personalize Cancer Treatments
A new statistical method for analyzing next-generation sequencing (NGS) data that helps researchers study the genome of various organisms such as human tumors and could help bring about personalized cancer treatments has been unveiled.
‘Fishing Expedition’ Nets Nearly Tenfold Increase in Number of Sequenced Virus Genomes
Newly developed computational tool finds 12,500 genomes of viruses that infect microbes.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!