Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>Resources>Application Notes>This Application Note
  Application Notes
Scientific News
NASA's DNA Sequencing in Space is a Success
DNA has been sequenced in space for the first time ever for the Biomolecule Sequencer investigation, using the MinION sequencing device.
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Bringing NGS to the Crime Lab
New technology being validated in BCI lab for use in Ohio missing persons cases.
Expanding Knowledge of Viral Diversity
Environmental datasets help researchers double the number of microbial phyla known to be infected by viruses.
How Cloud Connectivity Can Combat the Reproducibility Crisis
This infographic explains the reproducibility crisis, and how cloud connectivity can help overcome this problem.
The Power of Model Systems
New insights into the influence of host on the gut microbiome are revealed with in situ light sheet fluorescence microscopy and stochastic mathematical modelling.
New Way To Measure Important Chemical Modification On RNA
Technology could advance stem cells’ use in regenerative medicine, UCLA researchers say.
Mapping Antibody Creation in Humans
Researchers have created the first, detailed map of the body's antibody production, which could suggest new treatment options for immune disorders.
Decoding the Genome of the Olive Tree
A team of scientists from three Spanish centers has sequenced, for the first time ever, the complete genome of the olive tree. This work will facilitate genetic improvement for production of olives and olive oil, two key products in the Spanish economy and diet.
Four Newly-Identified Genes Could Improve Rice
A Japanese research team have applied a method used in human genetic analysis to rice and rapidly discovered four new genes that are potentially significant for agriculture. These findings could influence crop breeding and help combat food shortages caused by a growing population.
Scroll Up
Scroll Down

Sequence-Specific DNA Assay
Bookmark and Share

Molecular Devices

Measurement of specific DNA sequences can be achieved using the Threshold® System. Biotinylated and fluoresceinated oligonucleotide probes specific to the target sequence to be measured are used with the Immuno Ligand Assay (ILA) kit components. The probes are chosen so that they both anneal to the same strand of the target, adjacent to each other. DNA samples to be measured are digested with an appropriate restriction enzyme to liberate the target sequence on a small DNA fragment. The digested DNA is denatured in the presence of an excess of the biotinylated and fluoresceinated probes. The probes and denatured target are allowed to anneal, generating probe-target hybrids. These probe-target hybrids are captured on the biotinylated Threshold sticks using the ILA capture reagent (streptavidin) which binds to the biotinylated probe. The captured probe-target hybrids are then detected and quantitated using the ILA enzyme reagent (antifluorescein- urease conjugate) which binds to the fluoresceinated probe. This application note is intended as a guide and does not represent a validation of this assay, nor necessarily the optimal performance parameters for all probe and target DNA combinations.



Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!