Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>Products>This Product

Human Nanog Differentiation Reporter (pGreenZeo, plasmid)

Product Description
Accurately monitor the pluripotent state Mammalian development requires the specification of over 200 unique cell types from a single totipotent cell. Embryonic stem (ES) cells are derived from the inner cell mass of the developing blastocyst and can be propagated in culture in an undifferentiated state while maintaining the capacity to generate any cell type in the body. The recent derivation of human ES cells provides a unique opportunity to study early development and an understanding of the transcriptional regulatory circuitry that is responsible for pluripotency and self-renewal in human ES cells is fundamental to understanding human development and realizing the therapeutic potential of these cells. Three transcription factors are known to be critical in the maintenance of ESC pluripotency: Oct4, Nanog, and Sox2. Oct4 (Pou5f1) has a highly conserved role in maintaining pluripotent cell populations (Nichols et al., 1998; Morrison and Brickman, 2006), and its expression level dictates ESC fate (Niwa et al., 2000). SOX2 forms a complex with OCT4 and is necessary to cooperatively activate target genes in ESCs (Yuan et al., 1995; Ambrosetti et al., 1997). These factors comprise one essential circuit regulating ESC pluripotency in which OCT4 regulates Sox2, and additionally, the OCT4-SOX2 complex activates Oct4 expression (Okumura-Nakanishi et al., 2005). The transcription factors OCT4, SOX2, and NANOG have essential roles in early development and are required for the propagation of undifferentiated embryonic stem (ES) cells in culture. SBI has built lentivector-based transciptional Response Reporters that are responsive to Oct4 or Sox2 activity as response elements or Promoter Reporters for either Human or Mouse Oct4 and Nanog into the pGreenZeo, pRedZeo and pRedTK systems. Choice of fluorescent screening marker The lenti-reporter systems employ either a Green Fluorescent Protein (copGFP) or a Red Fluorescent Protein (RFP). Depending upon your screen, either Green or Red markers may be suitable and compatible with other fluorescent protein markers in your experimental scheme. The Response Reporters feature the dual reporting system with both GFP and Luciferase. Choice of antibiotic selection marker The Response Reporters have an optional constitutive EF1-Puro or -Neo selection cassette for establishing cells lines. The Promoter Reporters feature Zeomycin (Zeo) resistance marker confers resistance to the antibiotic Zeocin™. Zeocin™ causes cell death by intercalating into DNA and causes DNA strand breakage. This antibiotic is effective on most aerobic cells and is therefore useful for selection in bacteria, eukaryotic microorganisms, plant and animal cells. Thymidine kinase (TK) is a Herpes simplex virus-derived enzyme that acts on the guanosine nucleotide analog ganciclovir. TK phosphorylates ganciclovir, and TK+ cells produce highly-toxic triphosphates that lead to cell death (negative selection). All Stem Cell Pluipotency Monitors are available as lentivector plasmids or as pre-packaged lentiviral preparations (using the HIV lentiviral backbone and pseudotyped with VSV-G protein)—ready for transduction of target cells. The standard product size is 10 ug of plasmid or 1 x 10^6 IFUs per packaged lentiviral reporter. Positive and negative transduction control plasmids and pre-packaged viral particles are also available.
Product Human Nanog Differentiation Reporter (pGreenZeo, plasmid)
Company System Biosciences
Price Request a quote
More Information View company product page
Catalog Number SR10030PA-1
Quantity 10 ug
Company Logo

System Biosciences
265 North Whisman Rd. Mountain View, CA 94043, USA

Tel: 1.650-968-2200
Fax: 1.650.968.2277

Scientific News
Fixing Holes in the Heart Without Invasive Surgery
UV-light enabled catheter is a medical device which represents a major shift in how cardiac defects are repaired.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Treatment for Obesity Developed
Researchers at the University of Liverpool, working with a global healthcare company, have helped develop a new treatment for obesity.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Will Brain Palpation Soon Be Possible?
Researchers have developed non-invasive brain imaging technique which provides the same information as physical palpation.
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Groundbreaking Computer Program Diagnoses Cancer in Two Days
Researchers have combined genetics with computer science and created a new diagnostic technology can with 85 per cent certainty identify the source of the disease and thus target treatment and, ultimately, improve the prognosis for the patient.
Michigan Researchers Use Raman Spectroscopy
inVia confocal Raman microscope used in the study of various childhood diseases.
Scroll Up
Scroll Down

Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos