Corporate Banner
Satellite Banner
qPCR
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

TGen Launches Center for Rare Childhood Disorders

Published: Monday, October 08, 2012
Last Updated: Monday, October 08, 2012
Bookmark and Share
Research efforts focused on changing the lives of countless undiagnosed children.

The Translational Genomics Research Institute (TGen) today announced the creation of a new center that could have life changing effects on the lives of potentially thousands of children and their families.

The TGen Center for Rare Childhood Disorders (C4RCD) will harness the latest technologic leaps in genome sequencing to pinpoint the causes of rare childhood disorders that largely remain a mystery to modern medicine.

“We envision a Center that leverages today’s genomic technology toward diagnosing children with a baffling array of seriously debilitating, and often lethal, symptoms for which there is no known cause or treatment, let alone a cure. In many cases, it’s merely a collection of symptoms,” said Dr. Jeffrey Trent, President and Scientific Director of TGen. “Through the C4RCD, TGen has a unique opportunity to significantly improve the lives of these children and their families.”

The Honorable Arizona Gov. Jan Brewer praised the new TGen initiative as a major step in meeting the healthcare needs of Arizonans, and as a fundamental building block of the state’s burgeoning biotechnology sector.

“With its new Center for Rare Childhood Disorders, TGen continues to position Arizona as a world-class leader in bioscience and research,” said Gov. Brewer. “More importantly, this program holds the promise of bringing much-needed certainty and hope to the lives of thousands of Arizona children and their families. I commend TGen for its pioneering work that is making a real difference in the lives of Arizonans.”

Resolving the plight of one 12-year-old Phoenix girl named Shelby helped pave the way for C4RCD. Shelby was once a wheelchair-bound patient who for nearly a decade had difficulty walking, talking, holding her head up, and who had difficulty swallowing, and even breathing.

Shelby’s sequenced genome showed she had a problem making dopamine, a key brain chemical that helps regulate movement, muscle control and balance. Within a few months of receiving a medication to address her dopamine deficiency, Shelby was able to do away with her wheelchair. Now, she can talk, walk; enjoy restaurants, shopping and school.

“For us, TGen has been a miracle,” said Shelby’s mother, Renee, who hopes TGen’s C4RCD will bring hope to other parents, as well. “I am truly ecstatic. Shelby and I are very happy about it. It gives parents a place to go when it may seem that they’ve lost all hope. The scientists at TGen are amazing.”

Often, there are just a few children, or even a single child, with a particular set of symptoms.

Collectively, according to the National Institutes of Health, there are close to 7,000 rare diseases and about 25 million people in the U.S. have one.

“Too often, the parents of these children are left with nowhere to turn. They often are simply prescribed medications for their child, such as anti-seizure drugs, that only address the symptoms,” said Dr. David Craig, TGen’s Deputy Director of Bioinformatics and Co-Director of the C4RCD.

“At TGen, we now have the tools to sequence the entire genome of these children, in a relatively short time and at ever-lower costs. Through this examination of the billions of chemical letters that spell out each human being’s unique genome, and analyzing all the potential genetic changes, or mutations, we now have the ability to potentially identify the root cause of each child’s condition,” said Dr. Craig.

Understanding what is causing the disease or condition enables TGen to consider treatment options that could best help each child.

“Largely, these families have not had many answers. They’ve seen a lot of doctors. They’ve run a lot of tests. If they’re lucky, their disease might have a name,” said Dr. Matthew Huentelman, Head of TGen’s Neurobehavioral Research Unit and Co-Director with Dr. Craig of the C4RCD. “We hope to provide these families — first and foremost — with answers. We strongly believe those answers will be found in their genome.”

Once a genetic target is identified, C4RCD will look for an existing FDA-approved drug that could be repurposed to treat the rare disorder.

If there is no obvious approved drug, C4RCD will develop a custom screening approach to prioritize approved drugs in order of their potential effectiveness. In this fashion, it may be possible to help improve the quality of life for these children quickly without the time-consuming development of an entirely new pharmaceutical agent.

TGen’s C4RCD has four major components: 1) Clinical evaluation and genomic diagnosis. 2) Counseling, and optimizing conventional therapy. 3) Novel therapy development. 4) Community outreach.

Each child will be clinically evaluated and have their genome tested, including the use of whole genome sequencing, which spells out the entire 3 billion letters of each individual’s DNA genetic code.

“One of the important things is to collect available clinical information, and accurately define the phenotype, or problem, causing the child’s issues. That has to be framed very carefully, correctly. This initial step is critical in order to analyze the genome sequencing data,” said Dr. Vinodh Narayanan, Medical Director of C4RCD.

“A precise genetic or molecular diagnosis is of vital importance for the entire family of our patients. But that is just the beginning. We want to use this genetic information to understand more about the particular disorder, and develop novel approaches to treatment. That is what is going to differentiate us from other services — complete integration of the clinical center and the genomic research lab,” said Dr. Narayanan.

Dr. Trent said that there is a critical unmet need in the medical community, which only now can begin to be addressed through the advent of new genomic technologies.

“We continue to be amazed at the way families of children with debilitating conditions are able to find each other, share stories of their victories and of what is wrong, and try to come up with answers,” said Dr. Trent. “We hope to become an active partner and leader in these communities as we learn from the families and patients, and then try to come up with new and better answers for these children — today.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
CDC Updates Zika Recommendations
CDC has issued updated Zika recommendations and guidance for healthcare providers with a focus on sexual transmission.
Lab-Tested Diagnosis Needed When Treating Persistent Diarrhea
New PCR multiplex method makes lab testing more effective.
Biomarker for Multiple Sclerosis Detection Discovered
Winthrop-University Hospital researchers discover biomarker for multiple sclerosis detection.
Scientists Link Bipolar Disorder to Unexpected Brain Region
Researchers from The Scripps Research Institute have found that gene within the brain’s striatum could be linked to biopolar disorder.
Quick, Early Test For Ebola Could Prevent Epidemics
Researchers from Princeton University are collaborating with U.S. government labs to develop a more rapid, accurate and inexpensive test for the Ebola virus with the aim of identifying infections before carriers become symptomatic and contagious.
From Super to Ultra-Resolution Microscopy
A new method pushes the frontier in imaging resolution, with the potential to distinguish individual features in single molecules.
Cancer Research UK joins forces with U.S. 'Cancer Moonshot'
Cancer Research UK and the US government’s National Cancer Institute have announced that two teams will work together to radically accelerate progress against cancer, in one of the first international collaborations inspired by US Vice President Joe Biden’s Cancer Moonshot.
Assessing the Effectiveness of Genome-Editing Technologies
Researchers have developed a cost-effective and rapid method for assessing edits generated by CRISPR-Cas9 and other genome-editing technologies.
Measuring the Abundance of Extremely Rare Mutations
Researchers from Rutgers University demonstrate the use of multiplex real-time PCR assays to measure the abundance of extremely rare mutations associated with cancer.
Harnessing Helpful Microbes
Seeking to further harness microbes’ many uses, the federal government has launched the National Microbiome Initiative (NMI) to “foster the integrated study of microbiomes across different ecosystems.”

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!