Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

WaferGen Partners with Salk Institute to Establish a Nano-qPCR Core Lab

Published: Tuesday, March 19, 2013
Last Updated: Tuesday, March 19, 2013
Bookmark and Share
Key initial application is to develop Chromatin-Immunoprecipitation (ChIP) PCR methods.

The Salk Institute and WaferGen Bio-systems, Inc. announced the formation of a nano-qPCR Core Laboratory under the guidance of Ronald M. Evans, Professor and March of Dimes Chair in Molecular and Developmental Biology at Salk.  The lab will utilize WaferGen’s SmartChip System as the backbone technology for high-throughput real-time PCR studies.  A major focus will be on designing and testing libraries of assays targeting receptors and transcriptional regulators for important functional pathways, thereby interrogating entire regulatory networks in a highly parallel fashion.  It is also envisioned that the nano-qPCR Core Lab will be an important resource for the larger Salk community.

Dr. Evans commented: “We have successfully tested WaferGen’s SmartChip system in our laboratory in a variety of gene expression experiments.  The platform is ideal for follow up studies to ChIP Seq, and for de novo large-scale gene expression studies in precious clinical samples.

We made SmartChip System the technology of choice based on its ability to perform qPCR without pre-amplification, while providing the required throughput for measuring a series of longitudinal genomic events in cells.  Another attractive feature is SmartChip’s flexibility, which allows our scientific questions to dictate the experimental design in a convenient and cost-effective workflow.”

Chromatin-immunoprecipitation (ChIP) is a technique whereby genomic regulatory sites bound by a specific factor of interest are enriched through antibody precipitation.  ChIP Sequencing utilizes modern NGS technology to provide the nucleotide sequences of these regulatory sites.

Downstream studies have historically been conducted by designing qPCR assays targeting these elements and have been restricted to small numbers of analytes due to the limited amounts of ChIP material.  WaferGen’s SmartChip technology enables NGS researchers to quantitatively evaluate the presence of numerous elements across multiple ChIP samples.  This offering facilitates the validation of large ChIP Seq data sets and allows researchers to conduct large studies of promoter occupancy dynamics.

“We are very pleased to assist Dr. Evans and the Salk faculty in expanding the frontiers of life science research, as they try to unlock the secrets of systems biology.  In particular, we are excited to collaborate on developing a comprehensive content menu for ChIP PCR, which is a natural extension of ChIp Seq experiments.  Because ChIP PCR on SmartChip is much more cost-effective than ChIP Seq, it will allow scientists to increase throughput and generate many more datapoints after the initial ChIp Seq discovery.  This collaboration is another extension of our strategy of providing high value-adding solutions tied to Next-Gen sequencing (NGS), which address both upstream and downstream workflow needs.   Our offering encompasses both the recently-announced target enrichment for NGS product to be launched in Q2 2013, as well as our standard suite of qPCR products and applications, such as gene expression and genotyping,” stated Ivan Trifunovich, President and CEO of WaferGen.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

WaferGen & Genentech Collaborate
WaferGen’s SmartChipTM platform has potential to accelerate pharmaceutical drug discovery and development.
Friday, May 08, 2015
WaferGen Launches Operations at new Malaysian Subsidiary
New subsidiary to play key role in SmartChip Real-Time PCR System’s research, development, and manufacturing.
Friday, January 25, 2008
Scientific News
New Virus Identified In Blood Supply
Scientists have discovered a new virus that can be transmitted through the blood supply.
Tracking Changes in DNA Methylation In Real Time At Single-Cell Resolution
Whitehead Institute researchers have developed a methodology to monitor changes in DNA methylation over time in individual cells.
DNA Alterations as Among Earliest to Occur in Lung Cancer Development
Genetic footprints of precancer detectable in some blood samples.
Bar-Coding Technique Opens Up Studies Within Single Cells
Scientists have developed a method for simultaneously imaging and identifying dozens of molecules within individual cells.
Scientists Learn How to Predict Plant Size
VIB and UGent scientists have developed a new method which allows them to predict the final size of a plant while it is still a seedling.
New Device Reduces Time to Diagnose Infections
A new diagnostic device created by a collaborative team of UA engineers and scientists may significantly reduce the amount of time necessary to diagnose tissue infections.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
Researchers Develop qPCR Prognosis Test for NSCLC Patients
A nine-gene molecular prognostic index (MPI) for patients with early-stage non-small cell lung cancer (NSCLC) was able to provide accurate survival stratification and could potentially inform the use of adjuvant therapy in patients struggling with the disease.
Genome Wide Annotation of Primary miRNAs Reveals Novel Mechanisms
Researchers have devised a strategy for genome-wide annotation of primary miRNA transcripts, providing extensive new annotations in human and mouse, and shedding light on mechanisms of regulation of microRNA gene expression.
‘Fishing Expedition’ Nets Nearly Tenfold Increase in Number of Sequenced Virus Genomes
Newly developed computational tool finds 12,500 genomes of viruses that infect microbes.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos