Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Surveying Cells, One At a Time

Published: Wednesday, May 22, 2013
Last Updated: Wednesday, May 22, 2013
Bookmark and Share
When studying any kind of population — people or cells — averaging is a useful, if flawed, form of measurement.

According to the US Census Bureau, the average American household size in 2010 was 2.59. Of course, there are no homes with exactly 2.59 people. By inspecting each house individually, one would see some homes occupied by a single individual, and others by large families. These extremes get lost when values are averaged over a population.

A similar masking of information happens when cells are studied in large numbers. Researchers have typically taken top-down approaches, watching how things change in thousands or millions of cells and trying to infer what happened within each one. New technological advances, however, are giving scientists powerful, high-resolution genomic tools to monitor individual cells, offering an unprecedented view of cellular function and circuitry.

To assess the potential of these new tools, a team of scientists at the Klarman Cell Observatory at the Broad Institute recently completed an effort to read, or sequence, all the RNA — the “transcriptome” — in individual immune cells. Whereas DNA in a cell’s genome represents its blueprint for making the building blocks of cells, RNA is more like the cell’s contractor, turning that blueprint into proteins. By sequencing RNA in single cells, scientists can obtain a picture of what proteins each cell is actively making and in what amounts. “Single-cell sequencing is a way to look at the diversity of cells at the individual cell level,” said Hongkun Park, Broad associate member and a co-corresponding author on the new study, which appears in the May 19 online issue of Nature.

“We decided to approach the problem in a new way,” said Alex Shalek, a postdoctoral researcher at Harvard and co-first author. “We wanted to look at how every single cell responds, then look for patterns in the behavior that would tell us something about how cells make decisions.”

A collaboration among scientists from the Klarman Cell Observatory and the laboratories of Park and Broad core member and co-corresponding author Aviv Regev, the study was an effort to not only pilot single-cell techniques, but to also test whether meaningful biology could be uncovered with this approach. "This work shows how the Observatory lets us explore new directions in cell circuitry, bringing together experimental biologists, computer scientists, and physicists,” said Regev. “The Observatory can then also help our broader community use the same technology to address circuits in many other cell types.”

By capitalizing on the unique resources at the Broad — statistical and computational expertise; deep knowledge of the cellular model of immune response; and tools and expertise from the Broad’s Genomics and Imaging Platforms, among others — the research team successfully mined RNA sequencing data to reveal surprising diversity within a single cell type.

“Our team shared a vision to build an understanding of biology from the ground up,” said Shalek. “We thought it would be fascinating to figure out what cells do by asking them to tell us, rather than trying to guess.”

The Broad researchers sought to adapt a recently developed technique for single-cell RNA sequencing, known as SMART-Seq, and apply it to a model of immune cell response well-studied by Regev, Broad senior associate member Nir Hacohen, and their fellow researchers. In this model, immune cells known as bone-marrow derived dendritic cells (BMDCs) are exposed to a bacterial cell component that causes the cells to mount an immune response.

Working with scientists in the Broad’s Genomics Platform, notably research scientists Joshua Levin and Xian Adiconis, the team established the SMART-Seq method for use in their model system, using it to gather RNA sequence data from 18 BMDCs in this pilot phase. Levin had previously fine-tuned RNA sequencing methods for low-quality or small-sized samples (see his recent Nature Methods paper on that work), and his group’s contributions were instrumental in this new work.

Because each cell contains such a tiny amount of genetic material, it must be copied, or amplified, many times over, introducing noise into the system. Computational biologists on the team led by Regev, including co-first author and postdoctoral researcher Rahul Satija, developed analytic methods to assemble each cell’s transcriptome and uncover meaningful patterns in the noisy data.

The team first analyzed the data for differences in expression, or activity, of various genes among the cells, seen as alterations in RNA abundance. Although they were working with a single cell type — BDMCs — they did expect to see some variation in gene expression as cells activated various pathways during their immune response. But the team discovered that some genes varied greatly, with 1000-fold differences in the expression levels between cells. “We went after a narrowly defined cell type that has a specific function that we think of as being very uniform,” said Shalek. “What we saw was striking — a tremendous variability that wasn’t expected.”

A cell’s transcriptome indicates more than genetic abundance. It can also reveal what versions of genes are being transcribed. It is well known that genes can be processed into RNA differently through so-called “alternative splicing,” producing unique proteins. Based on measurements taken from large populations of cells, scientists had thought that cells used both versions of a given gene. But by looking at individual cells, the researchers discovered that cells use one version or another preferentially — not both.

Importantly, the variation they observed wasn’t random; Satija and his fellow researchers were able to discern patterns in the data. “I think that variability in and of itself is interesting, but not incredibly useful,” said Satija. “But variation with structure is very powerful, because it can help identify biological relationships in this sea of heterogeneity.”

Analyzing the structure within the variation, the team found that the BDMCs they studied actually fell into two subpopulations, representing different developmental states of the cells as they responded to the bacterial challenge. They also saw variation in intracellular circuits used by the cells in the same developmental state, demonstrating the dynamic nature of cells.

The team went to great lengths to validate their findings with imaging work and animal models, something that prior studies of single-cell RNA sequencing lacked. “This work was the realization of something that people had hoped to do for a very long time,” said Shalek. “We had to ensure that our technical steps didn’t introduce biases that would distort the biological signals.”

In addition, this work demonstrates the power of single-cell RNA sequencing to reveal cellular diversity without using a genetic perturbation. “We took cells we thought were completely identical,” explained Satija, “and discovered how the naturally occurring variation between them could teach us something biologically.”

The biological insights from this effort, enabled by the diverse expertise and resources of the Broad, represent a first step in fulfilling the promise of unbiased, single-cell approaches to uncover biology. “It’s very rare to have people in one place who can generate this kind of data, analyze it, and validate it,” said Satija. “This collaboration is a very strong merging of a lot of different forms of expertise from many disciplines, and it’s been very successful.”

This new study is one of the first that tried to derive biological results from single-cell RNA-Seq data, rather than simply doing a technical evaluation. The scientists are now working to scale up their studies of single-cell RNA sequencing, and they have received a flood of requests from colleagues wanting to collaborate. Satija explains, “We hope that this is going to become a very broadly applicable technology, as it is applied to not only greater numbers of cells, but also for a very wide variety of tissues.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Single-cell Analysis Hits its Stride
Advances in technology and computational analysis enable scale and affordability, paving the way for translational studies.
Saturday, May 23, 2015
Scientific News
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Best Test to Diagnose Strangles in Horses Identified
New research by Dr. Ashley Boyle of New Bolton Center’s Equine Field Service team shows that the best method for diagnosing Strangles in horses is to take samples from a horse’s guttural pouch and analyze them using a loop-mediated amplification (LAMP) polymerase chain reaction (PCR) test.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
Rapid, Portable Ebola Diagnostic
Scientists confirmed the efficiency of the novel Ebola detection method in field trials.
Detecting When Hormone Treatment for Breast Cancer Stops Working
Scientists have developed a highly sensitive blood test that can spot when breast cancers become resistant to standard hormone treatment, and have demonstrated that this test could guide further treatment.
Packaging and Unpacking of the Genome
New research improves understanding of the importance of histone replacement.
New Way to Find DNA Damage
University of Utah chemists devised a new way to detect chemical damage to DNA that sometimes leads to genetic mutations responsible for many diseases, including various cancers and neurological disorders.
How Different Treatments for Crohn's Effect the Microbiome
Different treatments for Crohn's disease in children affects their gut microbes in distinct ways, which has implications for future development of microbial-targeted therapies for these patients, according to a study led by researchers from the Perelman School of Medicine at the University of Pennsylvania.
Charting the 'Genomic Biography' of Leukemia
A new study by scientists at Dana-Farber Cancer Institute and the Broad Institute of MIT and Harvard offers a glimpse of the wealth of information that can be gleaned by combing the genome of a large collection of leukemia tissue samples.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos