Corporate Banner
Satellite Banner
qPCR
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Neanderthal Viruses Found in Modern Humans

Published: Tuesday, November 19, 2013
Last Updated: Tuesday, November 19, 2013
Bookmark and Share
Ancient viruses from Neanderthals have been found in modern human DNA by researchers at Oxford University and Plymouth University.

The researchers compared genetic data from fossils of Neanderthals and another group of ancient human ancestors called Denisovans to data from modern-day cancer patients. They found evidence of Neanderthal and Denisovan viruses in the modern human DNA, suggesting that the viruses originated in our common ancestors more than half a million years ago.

This latest finding, reported in Current Biology, will enable scientists to further investigate possible links between ancient viruses and modern diseases including HIV and cancer, and was supported by the Wellcome Trust and Medical Research Council (MRC).

Around 8% of human DNA is made up of 'endogenous retroviruses' (ERVs), DNA sequences from viruses which pass from generation to generation. This is part of the 90% of our DNA with no known function, sometimes called 'junk' DNA.

'I wouldn't write it off as "junk" just because we don't know what it does yet,' said Dr Gkikas Magiorkinis, an MRC Fellow at Oxford University's Department of Zoology. 'Under certain circumstances, two "junk" viruses can combine to cause disease – we've seen this many times in animals already. ERVs have been shown to cause cancer when activated by bacteria in mice with weakened immune systems.'

Dr Gkikas and colleagues are now looking to further investigate these ancient viruses, belonging to the HML2 family of viruses, for possible links with cancer and HIV.

How HIV patients respond to HML2 is related to how fast a patient will progress to AIDS, so there is clearly a connection there,' said Dr Magiorkinis, an author on the latest study. 'HIV patients are also at much higher risk of developing cancer, for reasons that are poorly-understood. It is possible that some of the risk factors are genetic, and may be shared with HML2. They also become reactivated in cancer and HIV infection, so might prove useful as a therapy target in the future.'

The team are now investigating whether these ancient viruses affect a person's risk of developing diseases such as cancer. Combining evolutionary theory and population genetics with cutting-edge genetic sequencing technology, they will test if these viruses are still active or cause disease in modern humans.

'Using modern DNA sequencing of 300 patients, we should be able to see how widespread these viruses are in the modern population. We would expect viruses with no negative effects to have spread throughout most of the modern population, as there would be no evolutionary pressure against it. If we find that these viruses are less common than expected, this may indicate that the viruses have been inactivated by chance or that they increase mortality, for example through increased cancer risk,' said Dr Robert Belshaw, formerly of Oxford University and now a lecturer at Plymouth University, who led the research.

'Last year, this research wouldn't have been possible. There were some huge technological breakthroughs made this summer, and I expect we'll see even greater advances in 2014. Within the next 5 years, we should be able to say for sure whether these ancient viruses play a role in modern human diseases.'


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
Researchers Develop qPCR Prognosis Test for NSCLC Patients
A nine-gene molecular prognostic index (MPI) for patients with early-stage non-small cell lung cancer (NSCLC) was able to provide accurate survival stratification and could potentially inform the use of adjuvant therapy in patients struggling with the disease.
Genome Wide Annotation of Primary miRNAs Reveals Novel Mechanisms
Researchers have devised a strategy for genome-wide annotation of primary miRNA transcripts, providing extensive new annotations in human and mouse, and shedding light on mechanisms of regulation of microRNA gene expression.
‘Fishing Expedition’ Nets Nearly Tenfold Increase in Number of Sequenced Virus Genomes
Newly developed computational tool finds 12,500 genomes of viruses that infect microbes.
First Gene that Causes Mitral Valve Prolapse Identified
An international research collaboration led by MGH investigators has identified the first gene in which mutations cause the common form of mitral valve prolapse, a heart valve disorder that affects almost 2.5 percent of the population.
Automation Abound at AACC in Atlanta
Discover the latest breakthroughs, trends and products from the AACC Annual Meeting & Clinical Lab Expo.
Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
Diagnostic Test Developed for Enterovirus D68
researchers at Washington University School of Medicine in St. Louis have developed a diagnostic test to quickly detect enterovirus D68 (EV-D68), a respiratory virus that caused unusually severe illness in children last year.
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!