Corporate Banner
Satellite Banner
qPCR
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genetic Discovery Could Aid Diagnosis of Childhood TB

Published: Thursday, May 01, 2014
Last Updated: Thursday, May 01, 2014
Bookmark and Share
A distinctive genetic 'signature' found in the blood of children with TB offers new hope for improved diagnosis of the disease.

TB is very difficult to diagnose in children and is often recognised late when the child is already critically ill and the disease has spread from the lungs to the brain or other organs. Now an international team of researchers has shown that the disease can be identified in over 80 percent of cases by looking at 51 specific genes in the blood of affected children.

The researchers hope the findings - published on 30 April in the New England Journal of Medicine - could be used to develop a cheap, quick and effective diagnostic test.

Lead researcher, Professor Michael Levin, Director of the Wellcome Centre for Clinical Tropical Medicine at Imperial College London, explained: "We urgently need better methods to diagnose TB in children, so treatment can be started earlier and to avoid unnecessary treatment of children who are wrongly diagnosed. The symptoms of TB in children are common to many other childhood diseases, and the standard tests used on adults are not effective in children. Although the disease is treatable, thousands of children still die each year due to late diagnosis and many more are left with damage to their brain, bones and lungs." 

The study - funded through the EU and carried out at Wellcome Trust-supported units in Africa -looked at over 2,800 children admitted to hospitals in South Africa, Malawi and Kenya with symptoms of TB. The researchers identified those who had proven TB and those in whom TB was excluded as the cause of the child's illness.

Blood samples from the South African and Malawian children were examined to see which genes were activated or suppressed in those with the disease. The researchers found that TB could be distinguished from other diseases by looking at just 51 genes from over 30,000 in the human genome and seeing whether they were activated or suppressed. This information was used to give a single TB risk score for each child which, when tested in the Kenyan patients, accurately diagnosed over 80 percent of the children with TB.

Professor Levin said: "It has taken seven years and the combined efforts of clinicians and scientists in the UK, Africa and Singapore to identify this gene signature of childhood TB. What we now need is collaboration from biotechnology and industrial partners to turn these findings into a simple, rapid and affordable test for TB that can be used in hospitals worldwide."

According to World Health Organisation (WHO) statistics, TB is second only to HIV/AIDS as the greatest killer worldwide due to a single infectious agent. A significant proportion of TB cases worldwide are children. An estimated 530,000 children became ill with TB in 2012 and 74,000 HIV-negative children died of TB.

Professor Brian Eley from the University of Cape Town, who led the clinical study in South Africa, said: "Childhood TB is a major problem in African hospitals. An accurate test for childhood TB would be an enormous breakthrough, enabling earlier diagnosis, reducing long hospital admissions for investigation of TB suspects, and limiting the number of children treated inappropriately." 

Dr Suzanne Anderson from Brighton and Sussex Medical School, who led recruitment in Malawi, said: "This study has highlighted the benefit of research institutions in Europe collaborating with hospitals in Africa to apply sophisticated technology to major public health problems."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
HPV Genomes Show Greater Diversity Than Expected in Cancer Patients
The findings could have implications for eventually understanding why some cervical lesions become malignant.
Rapidly Detecting Drug-Resistant HepC
A nested PCR-based assay has been shown to rapidly and accurately detect drug-resistant strains of the hepatitis C virus.
Researchers Seek Water Test for Invasive Species Detection
Detecting invasive lake and river species using just a water sample would be a dream come true for wildlife managers and regulators in the state and University of Maine researchers may soon make this an inexpensive reality.
New Cell Structure Finding Might Lead to Novel Cancer Therapies
University of Warwick scientists in the U.K. say they have discovered a cell structure which could help researchers understand why some cancers develop.
Ebola Assays Compared in Head-to-Head Analysis
A newly published study has attempted to rigorously evaluate a few of the assays recently granted Emergency Use Authorization by the US Food and Drug Administration to test for Ebola Zaire virus.
Profiling DNA Viruses in Arctic Lakes
The Arctic's freshwater lakes contain viral communities composed of DNA viruses from lineages that are largely distinct from those described elsewhere, a new study suggests.
Polar Distribution of MicroRNAs Discovered within Eukaryotic Cells
A plausible new mechanism contributing to asymmetric cell division.
A New Role for Zebrafish: Larger Scale Gene Function Studies
A relatively new method of targeting specific DNA sequences in zebrafish could dramatically accelerate the discovery of gene function and the identification of disease genes in humans.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!