Corporate Banner
Satellite Banner
qPCR
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

One Cell is All You Need

Published: Monday, January 07, 2013
Last Updated: Monday, January 07, 2013
Bookmark and Share
Innovative technique can sequence entire genome from single cell.

The notion that police can identify a suspect based on the tiniest drop of blood or trace of tissue has long been a staple of TV dramas, but scientists at Harvard have taken the idea a step further. Using just a single human cell, they can reproduce an individual’s entire genome.

As described in a Dec. 21 paper in Science, a team of researchers, led by Xiaoliang Sunney Xie, the Mallinckrodt Professor of Chemistry and Chemical Biology, and made up of postdoctoral fellow Chenghang Zong, graduate student Alec Chapman, and former graduate student Sijia Lu, developed a method — dubbed MALBAC, short for Multiple Annealing and Looping-based Amplification Cycles — that requires just one cell to reproduce an entire DNA molecule.

More than three years in the making, the breakthrough technique offers the potential for early cancer treatment by allowing doctors to obtain a genetic “fingerprint” of a person’s cancer from circulating tumor cells. It also could lead to safer prenatal testing for a host of genetic diseases.

“If you give us a single human cell, we report to you 93 percent of the genome that contains three billion base pairs, and if there is a single base mutation, we can identify it with 70 percent detectability, with no false positives detected,” Xie said. “This is a major development.”

In a second paper, published simultaneously, researchers from Xie’s lab worked with scientists at Peking University in China to demonstrate MALBAC by sequencing 99 sperm cells from one individual and examining the paternal and maternal contribution to each cell’s genome.

As its name suggests, Xie said, MALBAC is a type of DNA amplification that allows researchers to duplicate the single DNA molecule present in a cell many times so it can be analyzed in the lab.

“While other methods of DNA amplification exist, most — like polymerase chain reaction (PCR) or multiple displacement amplification (MDA) — suffer from a specific problem,” Xie said. “Because they amplify exponentially, both have bias. They dramatically amplify some parts of the genome, but amplify others very little.”

By comparison, he said, MALBAC relies on linear amplification, meaning it is able to minimize the sequence-dependent bias.

Just as it does with other methods, the amplification process begins by splitting the DNA double helix into two single strands. Xie’s team then adds a random “primer” — tiny fragments of DNA — that binds in dozens of locations along each strand.

To extend those primers, Xie’s team used a DNA polymerase, the same cellular “machine” that synthesizes DNA as cells divide. Using that machine, researchers are able to extend the primers from as few as seven bases to as many as 2,000. Upon heating, they break the elongated primers apart from the original DNA, yielding half products.

When those half products are then amplified using the same primers, the two ends of the DNA combine, forming a loop that prevents it from being amplified again. The leftover half products and the original DNA are subject to another cycle of amplification. After five cycles of such linear pre-amplification, the full product is amplified by PCR to produce enough material for sequencing.

Despite the high coverage, DNA polymerases do occasionally make errors, Xie explained. To ensure that the genome produced by MALBAC is accurate, researchers turned to a different technique.

“Many diseases are associated with a single base mutation,” Xie said. “The challenge, however, is that finding one mutation in more than 3 billion base pairs is like looking for a needle in a haystack. Earlier techniques, like PCR or MDA, start with many cells, making the challenge even greater; a single mutation simply gets lost in the process. MALBAC, however, starts with a single cell, so it is easier to identify those mutations when they happen.”

To ensure MALBAC’s accuracy, Xie’s team simply let the original cell divide.
While the polymerase that researchers use to build the DNA sequence is highly accurate, only making one mistake per 10,000 bases, letting the cell divide gives researchers a chance to double check its work.

“The chances of the same mistake being made at the same base position are about one in 100 million,” Xie said. “If we let the cells divide again, and sequence three cells, the chances go up to one in 10 billion, less than the number of bases in the entire DNA molecule, so we can remove all the false positives.

“Getting that level of accuracy is very important, because if a doctor tells a patient that he detects a mutation, he doesn’t want to be wrong,” he continued. “When we use MALBAC, if a mutation appears in two or three related cells, we know it must be a real mutation.”

As a demonstration of MALBAC’s power, Xie and his team monitored the mutations that arose in a single cancer cell as it divided over 20 generations, and uncovered as many as 50 newly acquired mutations.

“This is the first time the mutation rate of a human cell has been measured directly,” Xie said. “Because we can now see the unique, newly acquired bases, we can study the dynamics of the genome in a way that was not possible before.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Harvard Licenses Genotyping Platform
Novel approach aids development of drug resistance testing products for HIV.
Tuesday, May 24, 2016
Diagnosing Cancer from a Single Drop of Blood
What if a physician could effectively diagnose cancer from one drop of a patient’s blood?
Friday, January 08, 2016
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Analysing 10,000 Cells Simultaneously
New techniquethat traps 10,000 cells on a single chip has potential for cancer screening for individuals.
$1M NIH Grant to Refine PCR Based Cancer Test
Researchers at Cornell University, Weill Cornell Medicine, the University of California, San Francisco, and the Infectious Diseases Institute in Kampala, Uganda, recieve a four-year, $1 million grant to hone technology for a quick, in-the-field diagnosis of Kaposi's sarcoma — a cancer frequently related to HIV infections.
Genetic Tug of War Before Cells Decide Fate
Researchers report that as developing blood cells are triggered by genetic signals firing on and off, a 'tug of war' occurs.
Linkage Biosciences Awarded NHS Contract
Comapny announces that it has been awarded a four-year contract by NHS Blood and Transplant (NHSBT) in the UK for implementation of the LinkSeq™ Real-Time PCR HLA typing product.
Understanding Tumor Evolution
Study provides insight into tumor evolution; may point to improved diagnosis and treatment.
Frankfurter Fraud: Finding Out What’s In Your Hot Dog
Scientists have developed a technique to test the meat content of Frankfurters.
How Cloud Connectivity Can Combat the Reproducibility Crisis
This infographic explains the reproducibility crisis, and how cloud connectivity can help overcome this problem.
Keeping Cells in Shape to Fight Sepsis
Boosting levels of a protein that controls the shape and activity of a crucial group of white blood cells improves survival and recovery chances during sepsis.
This 3D Printer Can Detect Infectious Diseases
Researchers at AI Biosciences, Inc. have repurposed 3D printers into machines capable of performing sample preparation and DNA amplification.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!