Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Population Genetics Unveils its Reflex™ Method

Published: Friday, April 19, 2013
Last Updated: Friday, April 19, 2013
Bookmark and Share
Novel Reflex technology for simultaneously sequencing long contiguous DNA regions in thousands of samples.

Researchers at Population Genetics Technologies Ltd (Cambridge, UK) have developed and validated an innovative technology - Reflex™ - for efficient targeted sequencing of long DNA regions in large numbers of genomic DNA samples.

Targeted sequencing is used to study specific parts of a genome that may be involved in disease or other relevant clinical traits.

Unveiling the role of these genomic regions usually requires interrogating long contiguous DNA sequences, such as a gene or genes, and doing so in many hundreds or thousands of people.

Samples from these individuals can be pooled to take advantage of the high capacity of current sequencing platforms, but current targeting approaches require processing of each sample separately to generate the multiplicity of small fragments required for next generation sequencing.

Reflex™ starts with pools of large genomic regions from hundreds or thousands of samples, performing fragmentation on the pool yet retaining the initial sample identity, thus greatly increasing the efficiency and decreasing the cost of targeted sequencing of contiguous genomic regions in large sample numbers.

This Reflex™ technology uses an intramolecular reaction to derive the shorter, sequencer-ready, daughter products from a pooled population of barcoded long-range PCR products while preserving the cognate DNA barcodes (Nucleic Acids Research, 2013, doi:10.1093/nar/gkt228).

This allows the large targeted region from many thousands of samples to be processed simultaneously in a pool, while allowing the derived sequences to be matched back to each individual.

The size of the targeted region depends on the desired design of the long-range PCR, but typically will span 7-10 kilobases.

The Reflex workflow enables uniform sequence coverage of long contiguous sequence targets in large numbers of samples at low cost on desktop next-generation sequencers.

The method requires small amounts of input genomic DNA and can be used to target members of multi-gene families with high specificity.

The technique is platform-agnostic, having been used successfully on Roche 454, Ion Torrent and Illumina platforms.

Current next-generation sequencing (NGS) platforms require that adaptors are added to the ends of short target DNA fragments to be sequenced.

Adding a multiplex identifier (MID), a short DNA barcode that identifies the sample, with the sequencing adaptor allows multiple DNA samples to be processed in a single sequencing run.

Typically, individual samples are prepared and then pooled at the sequencing step, requiring expensive and labor-intensive preparation methods: thus, for targeted re-sequencing, sample preparation costs dominate the overall cost.

Population Genetics CEO, Alan Schafer said that this issue motivated Population Genetics founder, Nobel Laureate Sydney Brenner, to invent a technique that can perform sample preparation on a pooled population of long ‘parent’ DNA fragments which are already appended with adaptors and MIDs, to generate smaller, sequencer-ready, ‘daughter’ amplicons that preserve the adaptors and MIDs.

“Many laboratories are interrogating the same genomic regions in many hundreds, if not thousands, of samples and can benefit from the sample-scale efficiencies of Reflex”. “When coupled with sequencers that allow an extra indexing run, the method can be used to simultaneously sequence thousands of samples in a single run”, he said.

The company has already used the Reflex workflow in this way to extract and sequence a gene target from 3000 human genomic DNA samples as part of an on-going disease susceptibility collaboration.

Reflex technology also has the potential to generate long reads within and beyond each starting long range PCR product by propagating molecular identifiers across a contiguous region (in development at Population Genetics).

The resulting data can inform haplotyping, genome phasing and RNA isoform identification using short-read NGS platforms, extending its value in providing coverage of clinically important genes and genomes.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Transgenomic, Precipio Diagnostics Merger
Merger will creates a robust diagnostic platform focused on improving accuracy of cancer diagnoses.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
Analysing 10,000 Cells Simultaneously
New techniquethat traps 10,000 cells on a single chip has potential for cancer screening for individuals.
Genetic Tug of War Before Cells Decide Fate
Researchers report that as developing blood cells are triggered by genetic signals firing on and off, a 'tug of war' occurs.
$1M NIH Grant to Refine PCR Based Cancer Test
Researchers at Cornell University, Weill Cornell Medicine, the University of California, San Francisco, and the Infectious Diseases Institute in Kampala, Uganda, recieve a four-year, $1 million grant to hone technology for a quick, in-the-field diagnosis of Kaposi's sarcoma — a cancer frequently related to HIV infections.
Linkage Biosciences Awarded NHS Contract
Comapny announces that it has been awarded a four-year contract by NHS Blood and Transplant (NHSBT) in the UK for implementation of the LinkSeq™ Real-Time PCR HLA typing product.
Understanding Tumor Evolution
Study provides insight into tumor evolution; may point to improved diagnosis and treatment.
Frankfurter Fraud: Finding Out What’s In Your Hot Dog
Scientists have developed a technique to test the meat content of Frankfurters.
How Cloud Connectivity Can Combat the Reproducibility Crisis
This infographic explains the reproducibility crisis, and how cloud connectivity can help overcome this problem.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos