Corporate Banner
Satellite Banner
qPCR
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Single-Cell Transfection Tool Enables Added Control for Biological Studies

Published: Thursday, May 23, 2013
Last Updated: Thursday, May 23, 2013
Bookmark and Share
Northwestern University researchers have developed a new method for delivering molecules into single, targeted cells through temporary holes in the cell surface.

The technique could find applications in drug delivery, cell therapy, and related biological fields.
Bulk electroporation — a technique used to deliver molecules into cells through reversible nanopores in the cell membrane that are caused by exposing them to electric pulses — is an increasingly popular method of cell transfection. (Cell transfection is the introduction of molecules, such as nucleic acids or proteins, into a cell to change its properties.)

However, because bulk electroporation applies electric pulses to a bulk cell solution, it results in heterogeneous cell populations and often low cell viability. To solve these problems, Northwestern University researchers have developed a novel tool for single-cell transfection.

The new method, called nanofountain probe electroporation (NFP-E), allows researchers to deliver molecules into targeted cells through temporary nanopores in the cell membrane created by a localized electric field applied to a small portion of the cell. The method enables researchers to control dosage by varying the duration of the electric pulses, which provides unprecedented control of cell transfection.

“This is really exciting,” said Horacio Espinosa, James and Nancy Farley Professor of Manufacturing and Entrepreneurship at Northwestern’s McCormick School of Engineering and one of the paper’s authors. “The ability to precisely deliver molecules into single cells is needed for biotechnology researchers to advance the state-of-the-art in therapeutics, diagnostics, and drug delivery toward the promise of personalized medicine.”

A paper describing the research, “Nanofountain Probe Electroporation (NFP-E) of Single Cells,” was published May 7 in the journal Nano Letters.

NFP-E is based on nanofountain probe (NFP) technology developed in Espinosa’s lab. The NFP-E chip consists of an array of microfabricated cantilever probes with integrated microfluidic channels. The probe has previously been used for high-speed nanopatterning of proteins and nanoparticles for drug delivery studies.

The new single-cell transfection application couples the probe with an electrode and fluid control system that can be easily connected to a micromanipulator or atomic force microscope for position control. This integrated system allows the entire transfection process and post-transfection cell response to be monitored by an optical microscope.

The NFP-E system is being developed for commercialization by iNfinitesimal LLC, a Northwestern spin-off company founded by Espinosa, and is expected to be available in late 2013.

The technique is proving to be extremely robust and multi-functional. Researchers have used the NFP-E chip to transfect HeLa cells with polysaccharides, proteins, DNA hairpins, and plasmid DNA with single-cell selectivity, high transfection efficiency (up to 95%), qualitative dosage control, and very high viability (up to 92%).

In addition to Espinosa, authors of the research paper include Wonmo Kang, Fazel Yavari, Majid Minary-Jolandan, Juan P. Giraldo-Vela, Asmahan Safi, Rebecca McNaughton, and Victor Parpoil. The research was supported by the National Science Foundation and the National Institutes of Health.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Blood Test To Diagnose Depression
Test identifies nine blood markers tied to depression; predicts who will benefit from therapy.
Thursday, September 18, 2014
Scientific News
New Method Promises to Speed Development of Food Crops
A new study addresses a central challenge of transgenic plant development: how to reliably evaluate whether genetic material has been successfully introduced.
Study Validates Analysis of Copy Number Variation in Miniaturized Reaction Volumes
Data shows that accurate and reproducible CNV results can be produced with IntelliQube using the Array Tape® consumable.
Faster Drug Discovery?
Startup develops more cost-effective test for assessing how cells respond to chemicals.
Edited Stem Cells Offer Hope of Precision Therapy for Blindness
Findings raise the possibility of treating blinding eye diseases using a patient's own corrected cells as replacement tissue.
Parallel Single-Cell Profiling
New single-cell genomics protocol allows researchers to study links between DNA modifications (methylation) and the activity of a gene.
Pathogens Found in Iceman's Gut
Scientists discover Helicobacter pylori in the contents of Ötzi’s stomach along with some unexpected insights into the coexistence of man and bacterium.
Diagnosing Cancer from a Single Drop of Blood
What if a physician could effectively diagnose cancer from one drop of a patient’s blood?
Tracing a Cellular Family Tree
New technique allows tracking of gene expression over generations of cells as they specialize.
Accelerating Protein Evolution
A new tool enables researchers to test millions of mutated proteins in a matter of hours or days, speeding the search for new medicines, industrial enzymes and biosensors.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!