Corporate Banner
Satellite Banner
qPCR
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Accurate Detection of Extremely Rare Mitochondrial DNA Deletions Associated with Aging

Published: Thursday, September 05, 2013
Last Updated: Thursday, September 05, 2013
Bookmark and Share
The study published in Aging Cell identifies a new tool to accurately analyze extremely rare mitochondrial DNA deletions associated with a range of diseases and disorders as well as aging.

This approach, which relies on Droplet Digital PCR (ddPCR™) technology, will help researchers explore mitochondrial DNA (mtDNA) deletions as potential disease biomarkers.

The accumulation of mtDNA mutations is associated with aging, neuromuscular disorders, and cancer. However, methods to probe the underlying mechanisms behind this mutagenesis have been limited by their inability to accurately quantify and characterize new deletion events, which may occur at a frequency as low as one deletion event per 100 million mitochondrial genomes in normal tissue. To address these limitations, researchers at the Seattle, Washington-based Fred Hutchinson Cancer Research Center developed a ddPCR-based assay known as "Digital Deletion Detection" (3D) that allows for the high-resolution analysis of these rare deletions.

"It is incredibly difficult to study mtDNA mutations, let alone deletions, within the genome," said Dr. Jason Bielas, Assistant Member of the Public Health Sciences Division at the Fred Hutchinson Cancer Research Center and lead author of the study. "Our 3D assay shows significant improvement in specificity, sensitivity, and accuracy over conventional methods such as those that rely on real-time PCR."

Bielas added, "The increase in throughput afforded by droplet digital PCR shortened the analysis of deletion events to days compared to months using previous digital PCR methods. Without the technology, we could not have made this discovery."

At the center of the study was Bio-Rad Laboratories' QX100™ ddPCR system. Using the QX100 system, Bielas and his team analyzed eight billion human brain mtDNA genomes and identified more than 100,000 genomes with a deletion. They discovered that, contrary to popular belief, the majority of the increase in mtDNA deletions was not caused by new deletions but rather by the expansion of previous deletions. They hypothesized that the expansion of pre-existing mutations should be considered as the primary factor contributing to age-related accumulation of mtDNA deletions.

How the 3D Assay Works
3D is a novel three-step process that includes enrichment for deletion-bearing molecules, single-molecule partitioning of genomes into droplets for direct quantification via ddPCR, and breakpoint characterization using next-generation sequencing.

Once the enrichment process is completed using methods previously developed by Bielas and colleagues, the concentration of molecules within the droplets is adjusted by using the QX100 system so that the majority of droplets contain no mutant genomes while a small fraction contain only one. This process allows each deletion to be amplified without bias and without introducing the artifacts that are common in qPCR.

Following amplification, deletions can be analyzed using ddPCR to determine the absolute concentration of mutated molecules. Using the relationship between droplet fluorescence and amplicon size, Bielas and his team were able to characterize the size and complexity (whether they were a result of a few clonal expansions or a large collection of random deletions) of rare mitochondrial deletions in human brain samples.

The 3D assay provides an important new tool that will allow researchers to better study the mechanisms of deletion formation and expansion, and their role in aging. Droplet digital PCR's high throughput and increased sensitivity will also allow Bielas' lab to target other low-level disease-causing mtDNA deletions in skeletal muscle, brain tissue, and blood.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Presentations at the AACR Annual Meeting to Highlight Advances in Cancer Research Made Possible by Bio-Rad’s Droplet Digital™ PCR Technology
Tailoring Treatments and Tracking Mutations with Liquid Biopsies possible with ddPCR™ technology
Wednesday, April 22, 2015
Bio-Rad Reports Fourth-Quarter and Full-Year 2014 Financial Results
Company has introduced its S3e™ Cell Sorter during the quarter.
Saturday, March 07, 2015
Accurate Determination of Copy Number States for Multiallelic Copy Number Variations
Researchers use next-generation sequencing (NGS) and Bio-Rad’s Droplet Digital PCR (ddPCR™) technology to solve the technical challenge.
Tuesday, March 03, 2015
Awards for Bio-Rad's Protein Expression Products and Genomic Workflow Solutions
BioInformatics LLC has recognized Bio-Rad with two prestigious Life Science Industry Awards for “Best Protein Expression & Analysis Products” and “Best Workflow Solutions — Genomics.”
Monday, January 19, 2015
Bio-Rad Acquires Sequencing Technology Company GnuBIO
GnuBIO is a privately-held life sciences company that has developed a droplet-based DNA sequencing technology.
Friday, April 11, 2014
Droplet Digital PCR Enables Measurement of Potential Cancer Survival Biomarker
Study paves the way for further research into the role of TIL quantification in immunotherapy and as a cancer survival predictor.
Tuesday, December 10, 2013
A Brief RT-qPCR “Field Guide” for MIQE Adherence
Bio-Rad’s Sean Taylor and Eli Mrkusich have published a practical guide for MIQE compliance.
Monday, December 09, 2013
Researchers Develop Rapid, Cost-Effective Early Detection Method for Organ Transplant Injury
Chronix Biomedical and transplant expert Prof. Oellerich use Droplet Digital™ PCR to quantify early rejection biomarker.
Thursday, August 29, 2013
Accurate Quantification of NGS Libraries
A study has found that Droplet Digital PCR (ddPCR™) can be used as an accurate and precise method for quality control of NGS libraries.
Tuesday, August 20, 2013
New Biomarker Could Reveal Alzheimer's Disease Years Before Onset
A new study has reported the identification of what may be the earliest known biomarker associated with the risk of developing Alzheimer's disease (AD).
Wednesday, August 14, 2013
Droplet Digital™ PCR Works for GMO Quantification
A study published in the journal PLOS ONE has found that Droplet Digital PCR technology is suitable for routine analysis of genetically modified organisms in food, feed and seeds.
Wednesday, May 08, 2013
Bio-Rad Receives Award for QX100 Droplet Digital PCR System
Company receives Frost & Sullivan 2012 North American Laboratory Researchers’ Choice: Future market leader of digital PCR technology award.
Thursday, March 14, 2013
Bio-Rad Receives North American Market Penetration Award
The award honors the company that has grown market share at the fastest rate in its industry, as measured by revenues or units sold.
Tuesday, November 20, 2012
Case Study Demonstrates Importance of MIQE for qPCR Data Analysis
Published by Bio-Rad Laboratories, Inc. this case study demonstrates how real-time PCR can lead to erroneous conclusions if the key steps set out in the MIQE guidelines are not followed.
Friday, February 17, 2012
Bio-Rad Acquires QuantaLife and Digital PCR Technology
Bio-Rad purchases QuantaLife for $162 million in cash plus potential future milestone payments.
Friday, October 07, 2011
Scientific News
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
Researchers Develop qPCR Prognosis Test for NSCLC Patients
A nine-gene molecular prognostic index (MPI) for patients with early-stage non-small cell lung cancer (NSCLC) was able to provide accurate survival stratification and could potentially inform the use of adjuvant therapy in patients struggling with the disease.
Genome Wide Annotation of Primary miRNAs Reveals Novel Mechanisms
Researchers have devised a strategy for genome-wide annotation of primary miRNA transcripts, providing extensive new annotations in human and mouse, and shedding light on mechanisms of regulation of microRNA gene expression.
‘Fishing Expedition’ Nets Nearly Tenfold Increase in Number of Sequenced Virus Genomes
Newly developed computational tool finds 12,500 genomes of viruses that infect microbes.
First Gene that Causes Mitral Valve Prolapse Identified
An international research collaboration led by MGH investigators has identified the first gene in which mutations cause the common form of mitral valve prolapse, a heart valve disorder that affects almost 2.5 percent of the population.
Automation Abound at AACC in Atlanta
Discover the latest breakthroughs, trends and products from the AACC Annual Meeting & Clinical Lab Expo.
Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
Diagnostic Test Developed for Enterovirus D68
researchers at Washington University School of Medicine in St. Louis have developed a diagnostic test to quickly detect enterovirus D68 (EV-D68), a respiratory virus that caused unusually severe illness in children last year.
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!