Corporate Banner
Satellite Banner
qPCR
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Strong Link Between Obesity and 'Carb Breakdown' Gene

Published: Monday, March 31, 2014
Last Updated: Thursday, April 10, 2014
Bookmark and Share
Findings suggest that dietary advice may need to be tailored to individual's digestive system.

Researchers at King’s College London and Imperial College London have discovered that people with fewer copies of a gene coding for a carb-digesting enzyme may be at higher risk of obesity. The findings, published in Nature Genetics, suggest that dietary advice may need to be more tailored to an individual’s digestive system, based on whether they have the genetic predisposition and necessary enzymes to digest different foods.

Salivary amylase plays a significant role in breaking down carbohydrates in the mouth at the start of the digestion process. The new study suggests that people with fewer copies of the AMY1 gene have lower levels of this enzyme and therefore will have more difficulty breaking down carbohydrates than those with more copies.

Previous research has found a genetic link between obesity and food behaviours and appetite, but the new discovery highlights a novel genetic link between metabolism and obesity. It suggests that people’s bodies may react differently to the same type and amount of food, leading to weight gain in some and not in others. The effect of the genetic difference found in the latest study appears much stronger link than any of those found before. 

Researchers first measured gene expression patterns in 149 Swedish families with differences in the levels of obesity and found unusual patterns around two amylase genes (AMY1 and AMY2), which code for salivary and pancreatic amylase. This was suggestive of a variation in copy numbers relating directly to obesity. 

The finding was replicated strongly in 972 twins from TwinsUK, the biggest UK adult twin registry, which found a similar pattern of expression. The researchers then estimated the precise copy numbers of the amylase gene in the DNA of a further 481 Swedish subjects, 1,479 subjects from TwinsUK and 2,137 subjects from the DESIR project. 

The collaborative team found that the number of copies of the AMY1 gene (salivary amylase) was consistently linked to obesity. Further replication in French and Chinese patients with and without obesity showed the same patterns. 

A lower estimated AMY1 copy-number showed a significantly increased risk of obesity in all samples and this translated to an approximate eight-fold difference in the risk of obesity between those subjects with the highest number of copies of the gene and those with the lowest. 

Standard Genome wide mapping methods (GWAS) had missed this strong association as the area is technically hard to map. This variation in copy numbers, also known as ‘copy number variants’ (CNV) has been underestimated as a genetic cause of disease, but the link between CNV in the amylase gene and obesity provides an indication that other major diseases may be influenced by similar mechanisms.  

Professor Tim Spector, Head of the Department of Twin Research and Genetic Epidemiology at King’s and joint lead investigator said: 'These findings are very exciting. While studies to date have mainly found small effect genes that alter eating behaviour, we discovered how the digestive ‘tools’ in your metabolism  vary between people – and the genes coding for these – can have a large influence on your weight. 

'The next step is to find out more about the activity of this digestive enzyme, and whether this might prove a useful biomarker or target for the treatment of obesity. 

'In the future, a simple blood or saliva test might be used to measure levels of key enzymes such as amylase in the body and therefore shape dietary advice for both overweight and underweight people. Treatments are a long way away but this is an important step in realising that all of us digest and metabolise food differently – and we can move away from ‘one-size fits all diets’ to more personalised approaches.'


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
Researchers Develop qPCR Prognosis Test for NSCLC Patients
A nine-gene molecular prognostic index (MPI) for patients with early-stage non-small cell lung cancer (NSCLC) was able to provide accurate survival stratification and could potentially inform the use of adjuvant therapy in patients struggling with the disease.
Genome Wide Annotation of Primary miRNAs Reveals Novel Mechanisms
Researchers have devised a strategy for genome-wide annotation of primary miRNA transcripts, providing extensive new annotations in human and mouse, and shedding light on mechanisms of regulation of microRNA gene expression.
‘Fishing Expedition’ Nets Nearly Tenfold Increase in Number of Sequenced Virus Genomes
Newly developed computational tool finds 12,500 genomes of viruses that infect microbes.
First Gene that Causes Mitral Valve Prolapse Identified
An international research collaboration led by MGH investigators has identified the first gene in which mutations cause the common form of mitral valve prolapse, a heart valve disorder that affects almost 2.5 percent of the population.
Automation Abound at AACC in Atlanta
Discover the latest breakthroughs, trends and products from the AACC Annual Meeting & Clinical Lab Expo.
Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
Diagnostic Test Developed for Enterovirus D68
researchers at Washington University School of Medicine in St. Louis have developed a diagnostic test to quickly detect enterovirus D68 (EV-D68), a respiratory virus that caused unusually severe illness in children last year.
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!