Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>Resources>Application Notes>This Application Note
  Application Notes
Scientific News
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Microbe Sleuth
Tanja Bosak examines how life and the Earth evolved in tandem during their early history together.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Restoring Vision with Stem Cells
Age-related macular degeneration (AMRD) could be treated by transplanting photoreceptors produced by the directed differentiation of stem cells, thanks to findings published today by Professor Gilbert Bernier of the University of Montreal and its affiliated Maisonneuve-Rosemont Hospital.
The Age of Humans Controlling Microbes
Engineered bacteria could soon be used to detect environmental toxins, treat diseases, and sustainably produce chemicals and fuels.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
Metabolomic Platform Reveals Fundamental Flaw in Common Lab Technology
A new study led by scientists at The Scripps Research Institute (TSRI) shows that a technology used in thousands of laboratories, called gas chromatography mass spectrometry (GC-MS), fundamentally alters the samples it analyzes.
Atriva Therapeutics GmbH Develops Innovative Flu Drug
Highly effective against seasonal and pandemic influenza.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Scroll Up
Scroll Down

A global abstract analysis of selected histone-modifying enzymes using AKS
Bookmark and Share

Active Motif

With over 8.4 million PubMed abstracts and with 1000s of new abstracts added daily, it is physically impossible for any conscientious researcher to keep current with all of the newly published research. Most scientists rely on simple information-retrieval techniques to obtain scientific articles pertaining to a topic of interest. However, new sophisticated software programs have been developed to try to understand how biological concepts in scientific literature are used and how these concepts correspond to the query term provided by the user. When searching PubMed abstracts, most life science researchers do not want to be experts in text mining techniques, but simply want to have an all-encompassing understanding of the published information about a biomolecule and its relationship to disease or other biological entities. Therefore, global abstract analysis (GAA) is a novel approach for examining the complexity of information described in PubMed abstracts.

GAA was employed to illustrate how this technique can help uncover additional biological relationships, scientific information, and overall publication trends of a particular collection of biomolecules. In this study we selected twelve histone-modifying enzymes (1). They are important because several common post-translational modifications are driven by these types of histone-modifying enzymes. These resulting modifications influence the structure of chromatin and the dynamic interaction of transcriptional machinery. The modifications include: methylation, demethylation, acetylation, deacetylation, ubiquitination, sumoylation and phosphorylation. Methylation and acetylation are the typical control points between switching from gene silencing to active transcription, whereas hyperacetylated histone tails are associated with active transcription. In addition, ubiquitination is implicated in transcriptional regulation by polycomb silencing and regulation of chromatin structure, while phosphorylated residues on histone tails can be markers for chromatin condensation in mitosis, DNA repair, or apoptosis.

Distinct from traditional simple text search methods, the technique of GAA gives an extensive overview and historical synopsis of the published knowledge of these fascinating histone-modifying enzymes. In this report we describe the application of GAA to a group of disease-associated enzymes and demonstrate how a complete GAA can be developed for any targeted collection of biomolecules for pathway construction, biomarker discovery, or early investigative studies.

Further Information

Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos