Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Cancer Immunotherapy Can Use Small Numbers of Stem-Like Immune Cells to Destroy Large Tumors in Mice

Published: Friday, June 26, 2009
Last Updated: Friday, June 26, 2009
Bookmark and Share
New approach to stimulating immune cells enhances their anticancer activity, resulting in a powerful anti-tumor response in mice.

A new approach to stimulating immune cells enhances their anticancer activity, resulting in a powerful anti-tumor response in mice, according to a study by researchers at the National Cancer Institute, a part of the National Institutes of Health. This work represents an important advance in the development of immunotherapy for cancer and appears online June 14, 2009 in Nature Medicine.

Researchers found that a subset of immune cells, T lymphocytes called CD8+ memory stem cells, were capable of mediating strong anti-tumor immune response. These potent cells were generated in the laboratory by stimulating anti-tumor T cells in the presence of drugs designed to mimic an important signaling pathway called Wnt, which describes a complex network of proteins whose interactions are essential during development and stem cell maintenance.

Under the influence of Wnt, T lymphocytes acquired stem cell-like properties of multipotency and self renewal; that is, they generated differentiating daughter cells while regenerating themselves when transferred back to mice from the lab. These stem cell-like qualities enabled tiny numbers of T cells to trigger the destruction of large melanoma tumors.

This therapy, in which mice received CD8+ T memory stem cells together with a tumor vaccine and an immune system stimulant known as interleukin 2, improved the survival of treated mice compared with similar treatment using other types of memory T cells.

"This new category of lymphocytes is superior to T cells used in earlier experiments because they have the enhanced ability to renew themselves, to proliferate, to differentiate and ultimately to kill tumor cells," said NCI lead author Nicholas P. Restifo, M.D., an investigator in the Surgery Branch at the Center for Cancer Research.

Current clinical immunotherapies based on the transfer of tumor-specific T cells generated and expanded in the laboratory rely on the use of large numbers of tumor-specific T cells and have had beneficial but sometimes limited success.

If confirmed in humans, the use of tumor-reactive CD8+ memory stem cells could reduce the numbers of tumor-specific T cells needed for successful immunotherapy, thus making this type of therapy easier to develop so that more patients could benefit.

These findings mark the latest advance in the field of cancer immunotherapy using tumor-specific T cells, which is moving from proof-of-concept to a promising treatment for patients with metastatic cancer.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

2011 Biospecimen Research Network (BRN) Symposium
The National Cancer Institute's (NCI) Biospecimen Research Network Symposium, "Advancing Cancer Research Through Biospecimen Science," will be held March 28-29, 2011, at the Bethesda North Marriott Hotel & Conference Center in Bethesda, MD
Friday, January 07, 2011
Scientists Identify Markers on Human Breast Cancer Cells Linked to Development of a Form of Breast Cancer
The scientists named these human cells with tumor-forming ability in mice, xenograft-initiating cells, or XIC.
Friday, May 21, 2010
Drug for Multiple Myeloma Demonstrated to Extend Disease-Free Survival
Patients receiving lenalidomide following a blood stem cell transplant had their cancer kept in check longer than placebo receiving patients.
Thursday, December 24, 2009
Mouse Studies Show Gene Therapy Method Holds Promise in Targeting Tumor Blood Vessels for Destruction
Cancer researchers develop method for delivering a therapeutic gene specifically to the blood vessels of tumors in mice.
Thursday, December 18, 2008
Researchers Develop a Method to Evaluate Variations Identified in Breast Cancer Susceptibility Genes
The researchers believe that the new test could become a useful and viable tool for genetic counselors, and may have implications beyond cancer.
Tuesday, July 08, 2008
Method of Gene Therapy Alters Immune Cells for Treatment of Advanced Melanoma
Technique may also apply to other common cancers.
Friday, September 01, 2006
Scientific News
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Tissue-Engineered Colon from Human Cells
A study by scientists at Children’s Hospital Los Angeles has shown that tissue-engineered colon derived from human cells is able to develop the many specialized nerves required for function, mimicking the neuronal population found in native colon.
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Urine Excretion From Stem Cell-Derived Kidneys
Researchers report a strategy for enabling urine excretion from kidneys grown from stem cells.
Stem Cell Research Hints at Evolution of Human Brain
Researchers at UC San Francisco have succeeded in mapping the genetic signature of a unique group of stem cells in the human brain that seem to generate most of the neurons in our massive cerebral cortex.
The Final Word on STAP
Researchers fail to replicate STAP study; computational analysis reveals genomic inconsistency.
CRI Scientists See Through Bones
Findings uncover new details about blood-forming stem cells.
Scientists Sequence Genome Of Worm That Can Regrow Body Parts
Worm’s genome could lead to better understanding of its regenerative prowess and advance stem cell biology.
Stem Cell-Derived 'Organoids' Help Predict Neural Toxicity
A new system developed by scientists may provide a faster, cheaper and more biologically relevant way to screen drugs and chemicals that could harm the developing brain.
New Way To Repair Nerves
Tufts University biomedical engineers recently published the first report of a promising new way to induce human mesenchymal stem cells to differentiate into neuron-like cells:treating them with exosomes.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos