Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Plant Flavonoid Luteolin Blocks Cell Signaling Pathways in Colon Cancer Cells

Published: Friday, January 20, 2012
Last Updated: Friday, January 20, 2012
Bookmark and Share
New research published in BioMed Central’s open access journal BMC Gastroenterology shows that luteolin is able to inhibit the activity of cell signaling pathways (IGF and PI3K) important for the growth of cancer in colon cancer cells.

Luteolin is a flavonoid commonly found in fruit and vegetables. This compound has been shown in laboratory conditions to have anti-inflammatory, anti-oxidant and anti-cancer properties but results from epidemiological studies have been less certain.

Colon cancer is the second most frequent cause of cancer-related death in the Western World. Colon cancer cells have elevated levels of IGF-II compared to normal colon tissues. It is thought that this is part of the mechanism driving uncontrolled cell division and cancer growth. Researchers from Korea showed that luteolin was able to block the secretion of IGF-II by colon cancer cells and within two hours decreased the amount of receptor (IGF-IR) precursor protein. Luteolin also reduced the amount of active receptor (measured by IGF-I dependent phosphorylation).

Luteolin inhibited the growth stimulatory effect of IGF-I and the team led by Prof Jung Han Yoon Park found that luteolin affected cell signaling pathways which are activated by IGF-I in cancer. Prof Jung Han Yoon Park explained, “Luteolin reduced IGF-I-dependent activation of the cell signaling pathways PI3K, Akt, and ERK1/2 and CDC25c. Blocking these pathways stops cancer cells from dividing and leads to cell death.”

Prof Jung Park continued, “Our study, showing that luteolin interferes with cell signaling in colon cancer cells, is a step forward in understanding how this flavonoid works. A fuller understanding of the in vivo results is essential to determine how it might be developed into an effective chemopreventive agent.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Bile Acid Supports Production of Blood Stem Cells
A research group at Lund University has been able to show that bile acid is transferred from the mother to the foetus via the placenta to enable the foetus to produce blood stem cells.
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Edited Stem Cells Offer Hope of Precision Therapy for Blindness
Findings raise the possibility of treating blinding eye diseases using a patient's own corrected cells as replacement tissue.
Hacking the Programs of Cancer Stem Cells
All tumor cells are the offspring of a single, aberrant cell, but they are not all alike.
Newfound Strength in Regenerative Medicine
A promising new approach uses direct mechanical stimulation to repair severely damaged skeletal muscles.
Mapping out Cell Conversion
Researchers develop algorithm that takes the field of cell reprogramming forward.
Donor's Genotype Controls the Differentiation of IPS Cells
Pluripotent stem cells derived from different cell types are equally susceptible to reprogramming, indicates a recent study by the University of Helsinki and the National Institute for Health and Welfare, Finland. However, the genotype of the donor strongly influences the differentiation of the stem cell.
Signals That Make Early Stem Cells Identified
Researchers at The Rockefeller University have identified a new mechanism by which cells are instructed during development to become stem cells
Healing Scarred Hearts
Findings suggest stem cells may one day be used to regenerate damaged tissue after heart attack.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!