Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Fate Therapeutics and BD Biosciences Launch BD™ SMC4

Published: Wednesday, June 13, 2012
Last Updated: Wednesday, June 13, 2012
Bookmark and Share
First iPSC-related product to improve cellular reprogramming and IPS cell culture applications.

Fate Therapeutics, Inc. in collaboration with BD Biosciences, a segment of BD (Becton, Dickinson and Company), has announced the introduction of the first induced pluripotent stem cell (iPSC)-related product resulting from the collaboration between the two companies.

BD™ SMC4 is a patent protected, pre-formulated cocktail of small molecules for improving cellular reprogramming efficiencies and for enabling single-cell passaging and flow cytometry sorting of iPSCs in feeder cell-free and other pluripotent cell culture systems.

"iPSCs have the potential to redefine the way medical research is conducted," said Dr. Charles Crespi, Vice President at BD Biosciences.

Dr. Crespi continued, "However, most current reprogramming technologies are inefficient, which slows research efforts. BD SMC4 is an exciting complement to the BD portfolio of stem cell technologies that can accelerate the pace of research, and, ultimately, drug development."

The collaboration between BD Biosciences and Fate Therapeutics seeks to provide life science researchers and the pharmaceutical community reliable access to advanced iPSC tools and technologies. These technologies are for use in human disease research, drug discovery and the manufacture of cell-based therapies.

The identification of the small molecule additives, and their use in an industrial platform for iPSC generation and characterization was recently published in the journal, Scientific Reports (Valamehr et al Scientific Reports 2, Article number: 213, 2012).

"Our research focus has uncovered novel technologies to enable the commercial and industrial application of iPS cells," said Dr. Peter Flynn, Vice President of Biologic Therapeutics at Fate Therapeutics.

Dr. Flynn continued, "The BD SMC4 media additive was developed at Fate to enable our scientists to internally perform high-throughput generation, clonal selection, characterization and expansion of pluripotent cells, and we are excited to empower the stem cell research community with these important iPSC technologies through our collaboration with BD."

iPSC technology holds great promise for disease modeling, drug screening and toxicology testing as well as for autologous and allogeneic cell therapy.

Building on the foundational work of its scientific founders, Drs. Rudolf Jaenisch and Sheng Ding, Fate Therapeutics is developing a suite of proprietary products and technologies to overcome the remaining technical hurdles for iPS cell integration into the therapeutic development process.

Under the three-year collaboration, Fate and BD will co-develop certain stem cell products using Fate's award-winning iPSC technology platform, and BD will commercialize these stem cell products on a worldwide basis.

The iPSC product platform of Fate Therapeutics is supported by foundational intellectual property including U.S. Patent No. 8,071,369, entitled "Compositions for Reprogramming Somatic Cells," which claims a composition comprising a somatic cell having an exogenous nucleic acid that encodes an Oct4 protein introduced into the cell.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Fate Therapeutics Granted Exclusive License to Stem Cell Modulators for Osteo-Regeneration
The intellectual property rights covers small molecule compositions and methods for inducing bone formation granted by The Regents of the University of California.
Thursday, July 02, 2009
Fate Therapeutics Treats First Patient in Phase 1b Clinical Trial of FT1050 for Hematopoietic Stem Cell Support
Small molecule stem cell modulator administered in dual cord blood transplant for hematologic malignancy.
Tuesday, June 02, 2009
Fate Therapeutics Created by Stem Cell Scientists to Pursue new Approaches to Stem Cell Therapies
A group of the nation’s leaders in stem cell biology announced formation of a new biotechnology company developing drugs to control cell fate.
Friday, November 30, 2007
Scientific News
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Zebrafish Reveal Drugs that may Improve Bone Marrow Transplant
Compounds boost stem cell engraftment; could allow more matches for patients with cancer and blood diseases.
New Material Forges the Way for 'Stem Cell Factories'
Researchers have discovered the first fully synthetic substrate with potential to grow billions of stem cells. The researchcould forge the way for the creation of 'stem cell factories' - the mass production of human embryonic (pluripotent) stem cells.
Liver Regrown from Stem Cells
Scientists have repaired a damaged liver in a mouse by transplanting stem cells grown in the laboratory.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
'Google Maps' for the Body
Scientists have revealed research that uses previously top-secret technology to zoom through the human body down to the level of a single cell that could be a game-changer for medicine.
Adaptimmune's Novel Cancer Therapeutics Show Positive Clinical Trial Results
The company has announced that positive data from its Phase I/II study of its affinity enhanced T-cell receptor (TCR) therapeutic targeting the NY-ESO-1 cancer antigen in patients with multiple myeloma has been published.
Stem Cells Rescue Patients from Mitochondrial Disease
A study led by OHSU researchers has revealed a critical first step in developing a new gene and stem cell regenerative technique for treating patients with mitochondrial disease.
Eco-Friendly Nanobullet to Battle Bacteria
Researchers have developed a method to combat bacteria by engineering nanoscale particles that add the antimicrobial potency of silver to a core of lignin, a ubiquitous substance found in all plant cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!