Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Neural-like Stem Cells from Muscle Tissue May Hold Key to Cell Therapies for Neurodegenerative Diseases

Published: Tuesday, October 16, 2012
Last Updated: Tuesday, October 16, 2012
Bookmark and Share
Scientists at Wake Forest Baptist Medical Center have taken the first steps to create neural-like stem cells from muscle tissue in animals.

Details of the work are published in two complementary studies published in the September online issues of the journals Experimental Cell Research and Stem Cell Research.

“Reversing brain degeneration and trauma lesions will depend on cell therapy, but we can’t harvest neural stem cells from the brain or spinal cord without harming the donor,” said Osvaldo Delbono, M.D., Ph.D., professor of internal medicine at Wake Forest Baptist and lead author of the studies.

“Skeletal muscle tissue, which makes up 50 percent of the body, is easily accessible and biopsies of muscle are relatively harmless to the donor, so we think it may be an alternative source of neural-like cells that potentially could be used to treat brain or spinal cord injury, neurodegenerative disorders, brain tumors and other diseases, although more studies are needed.”

In an earlier study, the Wake Forest Baptist team isolated neural precursor cells derived from skeletal muscle of adult transgenic mice (PLOS One, Feb.3, 2011).

In the current research, the team isolated neural precursor cells from in vitro adult skeletal muscle of various species including non-human primates and aging mice, and showed that these cells not only survived in the brain, but also migrated to the area of the brain where neural stem cells originate.

Another issue the researchers investigated was whether these neural-like cells would form tumors, a characteristic of many types of stem cells. To test this, the team injected the cells below the skin and in the brains of mice, and after one month, no tumors were found.

“Right now, patients with glioblastomas or other brain tumors have very poor outcomes and relatively few treatment options,” said Alexander Birbrair, a doctoral student in Delbono’s lab and first author of these studies. “Because our cells survived and migrated in the brain, we may be able to use them as drug-delivery vehicles in the future, not only for brain tumors but also for other central nervous system diseases.”

In addition, the Wake Forest Baptist team is now conducting research to determine if these neural-like cells also have the capability to become functioning neurons in the central nervous system.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Research Supports Promise of Cell Therapy for Bowel Disease
Researchers have identified a special population of adult stem cells in bone marrow that have the natural ability to migrate to the intestine and produce intestinal cells.
Monday, March 04, 2013
Research Suggests Promise of Cell Therapy for Bowel Disease
New research shows that a special population of stem cells found in cord blood has the innate ability to migrate to the intestine and contribute to the cell population there.
Friday, September 21, 2012
Scientific News
Manufactured Stem Cells to Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Starving Stem Cells May Enable Scientists To Build Better Blood Vessels
Researchers from the University of Illinois at Chicago College of Medicine have uncovered how changes in metabolism of human embryonic stem cells help coax them to mature into specific cell types — and may improve their function in engineered organs or tissues.
Long-Term Culturing of Adult Stem Cells
A new procedure developed by Harvard Stem Cell Institute researchers (HSCI) at Massachusetts General Hospital (MGH) may revolutionize the culturing of adult stem cells.
Naked Mole Rat Exhibits “Extraordinary” Cancer Resistance
Scientists are getting closer to understanding the anti-cancer mechanism of the naked mole rat by making induced pluripotent stem cells.
Solutions for Biotherapeutic Characterization
Innovation to speed the routine.
Reclaiming The Immune System's Assault On Tumors
EPFL study shows a way to reclaim corrupted immune cells.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Body’s Own Gene Editing System Generates Leukemia Stem Cells
Inhibiting the editing enzyme may provide a new therapeutic approach for blood cancers.
Cirrhosis-Causing Cells Converted to Healthy Liver Cells in Mice
New approach that repairs liver from within may be more efficient than cell transplants.
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!