Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Wellcome Trust and MRC Invest £13m to Create a New National Stem Cell Resource

Published: Wednesday, November 07, 2012
Last Updated: Wednesday, November 07, 2012
Bookmark and Share
The Wellcome Trust and Medical Research Council today announced a £12.75 million initiative to create a catalogue of high-quality adult stem cells (iPS cells).

The initiative will provide a knowledge base to underpin the use of such cells in studying the effects of our genes on health and disease and lay the foundations to create a new iPS cell bank, providing a world-class resource for UK researchers.

The investment will enable researchers to exploit the technology made possible by the discoveries of Professor Sir John Gurdon and Professor Shinya Yamanaka, who this year received a Nobel Prize for their pioneering research into changing adult cells into stem cells.

Induced pluripotent stem (iPS) cells are derived from ordinary cells of the adult body by winding the clock back and reprogramming them to become stem cells. They have the potential to develop into a wide range of specialised cell types and are particularly useful for studying the biological mechanisms of disease and exploring the impact of genetic variation on cell behaviour.

The Human Induced Pluripotent Stem Cell Initiative will generate iPS cells from healthy volunteers and patient groups. Using state-of-the-art techniques, researchers will conduct extensive genetic analysis on the cells and will characterise how the cells respond to specific external stimuli and develop into specialised cell types.

The resulting cell collection and dataset will be the UK's most comprehensive resource for investigating how genetic variation impacts cell behaviour and how diseases linked to a specific genetic defect can result in a broad spectrum of clinical abnormalities. The project will be led by King's College London and the Wellcome Trust Sanger Institute.

Professor Fiona Watt of Kings College London said: "The Human Induced Pluripotent Stem Cell Initiative brings together world-leading expertise in clinical genetics, stem cell biology and genomic technologies. We believe that this research will drive forward the translation of basic research into improved diagnosis and treatment of disease.

"At King's, we also hope this will enable us to open a 'Stem Cell Hotel', providing a platform for collaborative experiments between clinician scientists with in-depth knowledge of specific diseases and cell biologists who have the tools to obtain quantitative readouts of cell behaviour."

"Since the Human Genome Project, we have been working to uncover the role of variation in our genome for our wellbeing," explains Dr Richard Durbin, from the Wellcome Trust Sanger Institute. "The 1000 Genomes Project published its first comprehensive suite of findings last Wednesday: today's announcement will harness biological research on a similarly powerful scale to give that variation biological meaning. By tying genetic variation to changes in the behaviour of human cells, we will build paths to understanding human disease."

Sanger Institute investigators aim to make more than 1000 iPS cell lines from healthy people and those with disease, and will use genomic approaches to study variation in their cellular function. The multi-institution project will include collaborations with the University of Cambridge, University of Dundee, European Bioinformatics Institute and UCL (University College London).

"The Human Induced Pluripotent Stem Cell Initiative will be an important resource that will help researchers around the world understand the links between genetic variation, cell behaviour and disease and speed up the translation of this research into improved diagnosis and treatment of disease," said Sir Mark Walport, director of the Wellcome Trust.

"The field of induced pluripotent stem cell research was made possible thanks to the seminal discoveries of Sir John Gurdon and Shinya Yamanaka, who were last month awarded the Nobel Prize for Medicine or Physiology for their work. This is a field in which the UK remains at the cutting edge. Our investment in this new initiative should further strengthen the UK's position and lead to patient benefit."

Professor Sir John Savill, Chief Executive of the MRC, said: "Induced pluripotent stem cells hold enormous potential to help us understand and treat human disease, but currently the application of iPS cell technology is limited by gaps in our knowledge regarding their biological properties and how we can best manipulate them to accurately model human disease.

"By investing in a UK-wide initiative in iPS cell technology, we hope to propel UK researchers to the forefront of this rapidly evolving field and provide an invaluable stock of high-quality cell lines for use by academia and industry alike."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Faster Visa Endorsement will Support International Mobility for Top Researchers
This visa route is designed for the brightest and best bringing them from outside the European Economic Area to the UK.
Monday, April 07, 2014
Stem Cell Transplant Repairs Damaged Gut in Mouse Model of IBD
The findings pave the way for patient-specific regenerative therapies for inflammatory bowel diseases such as ulcerative colitis.
Friday, October 18, 2013
Wellcome Trust and MRC Invest in World-Class Stem Cell Institute
Two of the UK’s largest funders of medical research are to invest £8 million in a new world-leading centre for stem cell biology and medicine.
Thursday, August 09, 2012
UK Biobank Opens to Researchers
Goal of UK Biobank is to improve the health of future generations.
Tuesday, April 03, 2012
Scientific News
Crucial for Stem Cell Survival Protein Identified Using Editing Tool CRISPR
A team of University of Wisconsin-Madison engineers has identified a protein that is integral to the survival and self-renewal processes of human pluripotent stem cells (hPSC).
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Zebrafish Reveal Drugs that may Improve Bone Marrow Transplant
Compounds boost stem cell engraftment; could allow more matches for patients with cancer and blood diseases.
New Material Forges the Way for 'Stem Cell Factories'
Researchers have discovered the first fully synthetic substrate with potential to grow billions of stem cells. The researchcould forge the way for the creation of 'stem cell factories' - the mass production of human embryonic (pluripotent) stem cells.
Liver Regrown from Stem Cells
Scientists have repaired a damaged liver in a mouse by transplanting stem cells grown in the laboratory.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
'Google Maps' for the Body
Scientists have revealed research that uses previously top-secret technology to zoom through the human body down to the level of a single cell that could be a game-changer for medicine.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!