Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Human Melanomas in Mice Predict Skin Cancer

Published: Thursday, November 08, 2012
Last Updated: Thursday, November 08, 2012
Bookmark and Share
Spread of human melanoma cells in mice correlates with clinical outcomes in patients, UTSW investigators find.

UT Southwestern Medical Center scientists led by Dr. Sean Morrison, director of the Children’s Medical Center Research Institute at UT Southwestern, have developed an innovative model for predicting the progression of skin cancer in patients.

In a new study published in Science Translational Medicine, Stage III human melanoma cells from 20 patients were implanted into specially selected mice with compromised immune systems.

Using this xenograft model, in which tissue is transplanted from one species to another, the institute’s team observed reproducible differences in the rate at which the cancer spread in the mice, or metastasized, that correlated with clinical outcomes in patients.

Dr. Morrison said human melanomas that metastasized efficiently in the mice eventually progressed to advanced, Stage IV disease in patients - spreading to distant organs, such as the brain, liver, or lungs. When the melanoma did not metastasize efficiently in the mice, it also did not form distant metastases in patients.

This xenograft model will make it possible to study the mechanisms that regulate disease progression and distant metastasis of melanomas in patients.

The researchers said they hope that their system will lead to new prognostic markers that identify patients at highest risk of disease progression as well as new therapies.

“We believe this is the only time in cancer biology that anyone has developed a xenograft model in which disease progression correlates with what happens in the patient,” said Dr. Morrison, senior author of the investigation and a Howard Hughes Medical Institute investigator at UT Southwestern.

Dr. Morrison continued, “The highly immune-compromised state of the mice makes it possible to observe the metastasis of human melanomas, and to study intrinsic differences among melanomas in their metastatic potential.”

Previous studies of cancer metastasis were limited by a lack of workable models in which scientists could study the progression of a patient’s cancer cells in laboratory animals in a way that correlated with clinical outcomes, he said.

But such correlation was clear in this study by the research institute, an innovative collaboration that melds the leading clinical resources of Children’s Medical Center with the outstanding research resources of UT Southwestern.

Melanomas that spread slowly and could not be detected in the blood of mice did not form distant tumors within 22 months in patients.

Melanomas that spread rapidly in mice did form distant tumors in patients within the same time frame, giving rise to circulating melanoma cells in the blood of the mice. This finding suggests that entry of melanoma cells into the blood is a step that limits the rate of distant metastasis.

“Ultimately we want to identify new drug targets,” Dr. Morrison said. “There are promising ideas coming out of this work that we hope will lead to clinical trials in melanoma.”

The research arose from the Morrison laboratory’s innovative techniques for studying neural crest stem cells - work that was recognized in 2004 with a Presidential Early Career Award for Scientists and Engineers.

Neural crest stem cells make melanocytes, a type of cell that can mutate into melanoma if exposed, for example, to excessive sunlight.

The Children’s Research Institute focuses on the interface of stem cell biology, cancer, and metabolism and will eventually include approximately 150 scientists in 15 laboratories.

The work of Dr. Morrison, who also leads the Hamon Laboratory for Stem Cell and Cancer Biology, focuses on adult stem cell biology and cancers of the blood, nervous system, and skin.

“We’re trying to do transformational science that not only changes scientific fields, but also creates new strategies for treating diseases,” Dr. Morrison said. “The goal is for our work to have a direct impact on the patient.”

Other UTSW researchers involved in the study were Drs. Elena Piskounova and Ugur Eskiocak, both postdoctoral researchers in the Children’s Research Institute. This work originated with lead author Dr. Elsa Quintana and Dr. Mark Shackleton in Dr. Morrison’s former lab at the University of Michigan.

Other key collaborators from the University of Michigan were Dr. Douglas R. Fullen, director of dermatopathology, and Dr. Timothy Johnson, director of the Multidisciplinary Melanoma Clinic.

“This animal model offers unprecedented opportunities for discovery efforts that could be translated into patient care,” Dr. Johnson said. “Dr. Morrison and I share a core mission to effectively treat melanoma, and that shared belief is the basis of the past, present, and future collaboration between UT Southwestern and the University of Michigan.”

Research support came from the Howard Hughes Medical Institute, the Melanoma Research Foundation, the Allen H. Blondy Research Fellowship at the University of Michigan, and the Cancer Prevention and Research Institute of Texas.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
Friday, November 20, 2015
CRI Scientists See Through Bones
Findings uncover new details about blood-forming stem cells.
Thursday, September 24, 2015
Regenerative Medicine Biologists Discover a Cellular Structure that Explains Fate of Stem Cells
The findings are presented in the journal Nature.
Thursday, July 02, 2015
Cell that Replenishes Heart Muscle Found by UT Southwestern Researchers
Researchers devise a new cell-tracing technique to detect cells that do replenish themselves.
Tuesday, June 23, 2015
Rare Stem Cells in Testis that Hold Potential for Infertility Treatments Identified
Rare stem cells in testis that produce a biomarker protein called PAX7 help give rise to new sperm cells — and may hold a key to restoring fertility, research by scientists at UT Southwestern Medical Center suggests.
Friday, September 05, 2014
Cancer Biologists Link Tumor Suppressor Gene to Stem Cells
The findings appear online in the journal eLife.
Thursday, March 27, 2014
Stem Cell Study Opens Door to Undiscovered World of Biology
Discovery published in Nature measures protein production.
Tuesday, March 11, 2014
Researchers Generate New Neurons in Brains, Spinal Cords of Mammals
Researchers created new nerve cells without the need of stem cell transplants.
Wednesday, February 26, 2014
Scientists Find that Estrogen Promotes Blood-Forming Stem Cell Function
Research could provide potential opportunities for improved treatment of blood cancers and enhance the effectiveness of chemotherapy.
Monday, January 27, 2014
Bone-marrow Environment Helps Fight Infection
Scientists identify bone-marrow environment that leads to production of infection-fighting T and B cells.
Monday, September 16, 2013
UTSW Researchers Identify New Potential Target for Cancer Therapy
Researchers have found that alternative splicing – a process that allows a single gene to code for multiple proteins – appears to be a new potential target for anti-telomerase cancer therapy.
Monday, April 22, 2013
Gene Found that Regenerates Heart Tissue
UT Southwestern researchers identify gene that regenerates heart tissue – critical finding for heart failure prevention.
Thursday, April 18, 2013
UT Southwestern Researchers Identify Mechanism that Maintains Stem Cells
Immune-system receptor maintains stemness of normal adult stem cells and helps leukemia cells growth.
Tuesday, November 27, 2012
Genetic Manipulation Boosts Growth of Brain Cells Linked to Learning
Genetic manipulation enhances effects of antidepressants, UT Southwestern researchers report.
Friday, March 09, 2012
Blood-forming Stem Cells' Growth Identified in First Breakthrough from New Institute
Endothelial and perivascular cells are responsible for nurturing haematopoietic stem cells.
Tuesday, January 31, 2012
Scientific News
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos