Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Transposable Elements Reveal a Stem Cell Specific Class of Long Noncoding RNAs

Published: Tuesday, November 27, 2012
Last Updated: Tuesday, November 27, 2012
Bookmark and Share
Over a decade after sequencing the human genome, it has now become clear that the genome is not mostly 'junk' as previously thought.

In fact, the ENCODE project consortium of dozens of labs and petabytes of data have determined that these 'noncoding' regions house everything from disease trait loci to important regulatory signals, all the way through to new types of RNA-based genes.

Yet over 70 years ago, it was first proclaimed that all this junk wasn't so junky. Barbara McClintock discovered the first utility of all of this junk DNA: jumping genes, also known as transposable elements. These genes serve only one purpose, which is to replicate themselves and reinsert randomly in the genome, or do they? Ironically, at the same time two other scientists (Roy Britten and Eric Davidson) proposed that jumping genes may be involved in regulating cell specificity. Indeed, in an exciting new study published in Genome Biology, John Rinn and David Kelley based at Harvard University and the Broad Institute in Boston, USA, provide genome-wide evidence that jumping genes may shape when a gene is turned on or off in stem cells.

"We set out to investigate how jumping genes have invaded the genome to potentially give rise to new genes in the 'junk regions'" says Rinn, the senior author of the study. "It has become very clear that there are thousands of long intergenic noncoding RNA genes (lincRNAs) that may herald a new paradigm for human health and disease." Yet how these genes have evolved from such a desert wasteland has remained a burning question. A new clue has emerged from the jumping genes that compose nearly 50% of the human genome.

"I like to think of it as on the 'origins of lincRNAs'" says Rinn. "It doesn't take more than a brief survey of McClintock, Britten and Davidson's work in the 50s and 60s to realize that transposable elements were a great first place to look. The human genome is in a constant battle with transposable elements with them randomly hopping into new locations, for good or for bad." Kelley adds that, "In my Ph.D. work assembling genomes from sequence fragments, these repetitive hopping genes were a major nuisance, which got me thinking about what they were doing in the genome." The study published by Rinn and Kelley finds a striking affinity for a class of hopping genes known as endogenous retroviruses, or ERVs, to land in lincRNAs. The study finds that ERVs are not only enriched in lincRNAs, but also often sit at the start of the gene in an orientation to promote transcription. Perhaps more intriguingly, lincRNAs containing an ERV family known as HERVH correlated with expression in stem cells relative to dozens of other tested tissues and cells. According to Rinn, "This strongly suggests that ERV transposition in the genome may have given rise to stem cell-specific lincRNAs. The observation that HERVHs landed at the start of dozens of lincRNAs was almost chilling; that this appears to impart a stem cell-specific expression pattern was simply stunning!"

These results also raise the tantalizing question of why transposable elements, derived from viruses, regulate stem cell-specific expression in mammals. Rinn hypothesizes that "transposable elements may not be limited to giving rise to new lincRNA genes, but may also provide an engine for the evolution of RNA-encoding genes. I like to think of it as the 'genome getting dirty': in the same way that kids that play in the dirt develop better immune systems, the genome may be 'getting dirty' with transposable elements, and once in a while, this has an advantageous effect of producing a new lincRNA gene."

What is clear is that transposable elements may control the tissue-specific expression of lincRNAs, thereby affecting the evolution and function of lincRNAs with important regulatory roles. Following on from these results, it will be interesting to determine other ways hopping genes may have shaped lincRNA evolution. Kelley notes that "This study merely scratches the surface of the possible roles of transposable elements influencing lincRNA function."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Organizing Human Specimen Collections: Getting the Best out of Biobanks
The diversity of biobanks, collections of human specimens from a variety of sources, raises questions about the best way to manage and govern them.
Friday, March 22, 2013
How to Make Stem Cells – Nuclear Reprogramming Moves a Step Forward
The idea of taking a mature cell and removing its identity (nuclear reprogramming) so that it can then become any kind of cell, holds great promise for repairing damaged tissue or replacing bone marrow after chemotherapy.
Monday, October 29, 2012
Modeling Cancer Using Ecological Principles
New research uses Tilman model of competition between invasive species to study the metastasis of prostate cells into bone.
Tuesday, October 04, 2011
Stem Cells from Bone Marrow Save the Day
New research investigates the therapeutic use of human stem cells from bone marrow against acute lung injury and identifies TNF-a-induced protein 6.
Monday, May 23, 2011
Scientific News
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Towards Patient-Specific Drug Screening
A new breakthrough by the 3D stem cell printing team at Heriot-Watt could pave the way to individually tailored drug testing regimes, both reducing the need for animal testing and ensuring that patients receive drugs which are most effective for their individual needs.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos